Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    An Attention-Based Approach to Enhance the Detection and Classification of Android Malware

    Abdallah Ghourabi*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2743-2760, 2024, DOI:10.32604/cmc.2024.053163 - 15 August 2024

    Abstract The dominance of Android in the global mobile market and the open development characteristics of this platform have resulted in a significant increase in malware. These malicious applications have become a serious concern to the security of Android systems. To address this problem, researchers have proposed several machine-learning models to detect and classify Android malware based on analyzing features extracted from Android samples. However, most existing studies have focused on the classification task and overlooked the feature selection process, which is crucial to reduce the training time and maintain or improve the classification results. The… More >

  • Open Access

    ARTICLE

    Developing a Model for Parkinson’s Disease Detection Using Machine Learning Algorithms

    Naif Al Mudawi*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4945-4962, 2024, DOI:10.32604/cmc.2024.048967 - 20 June 2024

    Abstract Parkinson’s disease (PD) is a chronic neurological condition that progresses over time. People start to have trouble speaking, writing, walking, or performing other basic skills as dopamine-generating neurons in some brain regions are injured or die. The patient’s symptoms become more severe due to the worsening of their signs over time. In this study, we applied state-of-the-art machine learning algorithms to diagnose Parkinson’s disease and identify related risk factors. The research worked on the publicly available dataset on PD, and the dataset consists of a set of significant characteristics of PD. We aim to apply… More >

  • Open Access

    ARTICLE

    Predicting Rock Burst in Underground Engineering Leveraging a Novel Metaheuristic-Based LightGBM Model

    Kai Wang1, Biao He2,*, Pijush Samui3, Jian Zhou4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 229-253, 2024, DOI:10.32604/cmes.2024.047569 - 16 April 2024

    Abstract Rock bursts represent a formidable challenge in underground engineering, posing substantial risks to both infrastructure and human safety. These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock, leading to severe seismic events and structural damage. Therefore, the development of reliable prediction models for rock bursts is paramount to mitigating these hazards. This study aims to propose a tree-based model—a Light Gradient Boosting Machine (LightGBM)—to predict the intensity of rock bursts in underground engineering. 322 actual rock burst cases are collected to constitute an exhaustive… More >

  • Open Access

    ARTICLE

    Securing Cloud Computing from Flash Crowd Attack Using Ensemble Intrusion Detection System

    Turke Althobaiti1,2, Yousef Sanjalawe3,*, Naeem Ramzan4

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 453-469, 2023, DOI:10.32604/csse.2023.039207 - 26 May 2023

    Abstract Flash Crowd attacks are a form of Distributed Denial of Service (DDoS) attack that is becoming increasingly difficult to detect due to its ability to imitate normal user behavior in Cloud Computing (CC). Botnets are often used by attackers to perform a wide range of DDoS attacks. With advancements in technology, bots are now able to simulate DDoS attacks as flash crowd events, making them difficult to detect. When it comes to application layer DDoS attacks, the Flash Crowd attack that occurs during a Flash Event is viewed as the most intricate issue. This is… More >

  • Open Access

    ARTICLE

    LuNet-LightGBM: An Effective Hybrid Approach for Lesion Segmentation and DR Grading

    Sesikala Bapatla1, J. Harikiran2,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 597-617, 2023, DOI:10.32604/csse.2023.034998 - 20 January 2023

    Abstract Diabetes problems can lead to an eye disease called Diabetic Retinopathy (DR), which permanently damages the blood vessels in the retina. If not treated early, DR becomes a significant reason for blindness. To identify the DR and determine the stages, medical tests are very labor-intensive, expensive, and time-consuming. To address the issue, a hybrid deep and machine learning technique-based autonomous diagnostic system is provided in this paper. Our proposal is based on lesion segmentation of the fundus images based on the LuNet network. Then a Refined Attention Pyramid Network (RAPNet) is used for extracting global… More >

  • Open Access

    ARTICLE

    Probe Attack Detection Using an Improved Intrusion Detection System

    Abdulaziz Almazyad, Laila Halman, Alaa Alsaeed*

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 4769-4784, 2023, DOI:10.32604/cmc.2023.033382 - 28 December 2022

    Abstract The novel Software Defined Networking (SDN) architecture potentially resolves specific challenges arising from rapid internet growth of and the static nature of conventional networks to manage organizational business requirements with distinctive features. Nevertheless, such benefits lead to a more adverse environment entailing network breakdown, systems paralysis, and online banking fraudulence and robbery. As one of the most common and dangerous threats in SDN, probe attack occurs when the attacker scans SDN devices to collect the necessary knowledge on system susceptibilities, which is then manipulated to undermine the entire system. Precision, high performance, and real-time systems… More >

  • Open Access

    ARTICLE

    Dm-Health App: Diabetes Diagnosis Using Machine Learning with Smartphone

    Elias Hossain1, Mohammed Alshehri2, Sultan Almakdi2,*, Hanan Halawani2, Md. Mizanur Rahman3, Wahidur Rahman4, Sabila Al Jannat5, Nadim Kaysar6, Shishir Mia4

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 1713-1746, 2022, DOI:10.32604/cmc.2022.024822 - 24 February 2022

    Abstract Diabetes Mellitus is one of the most severe diseases, and many studies have been conducted to anticipate diabetes. This research aimed to develop an intelligent mobile application based on machine learning to determine the diabetic, pre-diabetic, or non-diabetic without the assistance of any physician or medical tests. This study's methodology was classified into two the Diabetes Prediction Approach and the Proposed System Architecture Design. The Diabetes Prediction Approach uses a novel approach, Light Gradient Boosting Machine (LightGBM), to ensure a faster diagnosis. The Proposed System Architecture Design has been combined into seven modules; the Answering… More >

  • Open Access

    ARTICLE

    Classification for Glass Bottles Based on Improved Selective Search Algorithm

    Shuqiang Guo1, *, Baohai Yue1, Manyang Gao2, Xinxin Zhou1, Bo Wang3

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 233-251, 2020, DOI:10.32604/cmc.2020.010039 - 20 May 2020

    Abstract The recycling of glass bottles can reduce the consumption of resources and contribute to environmental protection. At present, the classification of recycled glass bottles is difficult due to the many differences in specifications and models. This paper proposes a classification algorithm for glass bottles that is divided into two stages, namely the extraction of candidate regions and the classification of classifiers. In the candidate region extraction stage, aiming at the problem of the large time overhead caused by the use of the SIFT (scale-invariant feature transform) descriptor in SS (selective search), an improved feature of… More >

  • Open Access

    ARTICLE

    Credit Card Fraud Detection Based on Machine Learning

    Yong Fang1, Yunyun Zhang2, Cheng Huang1,*

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 185-195, 2019, DOI:10.32604/cmc.2019.06144

    Abstract In recent years, the rapid development of e-commerce exposes great vulnerabilities in online transactions for fraudsters to exploit. Credit card transactions take a salient role in nowadays’ online transactions for its obvious advantages including discounts and earning credit card points. So credit card fraudulence has become a target of concern. In order to deal with the situation, credit card fraud detection based on machine learning is been studied recently. Yet, it is difficult to detect fraudulent transactions due to data imbalance (normal and fraudulent transactions), for which Smote algorithm is proposed in order to resolve… More >

Displaying 1-10 on page 1 of 9. Per Page