Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Improved YOLOv8n Model for Detecting Helmets and License Plates on Electric Bicycles

    Qunyue Mu1,2, Qiancheng Yu1,2,*, Chengchen Zhou1,2, Lei Liu1,2, Xulong Yu1,2

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 449-466, 2024, DOI:10.32604/cmc.2024.051728 - 18 July 2024

    Abstract Wearing helmets while riding electric bicycles can significantly reduce head injuries resulting from traffic accidents. To effectively monitor compliance, the utilization of target detection algorithms through traffic cameras plays a vital role in identifying helmet usage by electric bicycle riders and recognizing license plates on electric bicycles. However, manual enforcement by traffic police is time-consuming and labor-intensive. Traditional methods face challenges in accurately identifying small targets such as helmets and license plates using deep learning techniques. This paper proposes an enhanced model for detecting helmets and license plates on electric bicycles, addressing these challenges. The More >

  • Open Access

    ARTICLE

    YOLO and Blockchain Technology Applied to Intelligent Transportation License Plate Character Recognition for Security

    Fares Alharbi1, Reem Alshahrani2, Mohammed Zakariah3,*, Amjad Aldweesh1, Abdulrahman Abdullah Alghamdi1

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3697-3722, 2023, DOI:10.32604/cmc.2023.040086 - 26 December 2023

    Abstract Privacy and trust are significant issues in intelligent transportation systems (ITS). Data security is critical in ITS systems since sensitive user data is communicated to another user over the internet through wireless devices and routes such as radio channels, optical fiber, and blockchain technology. The Internet of Things (IoT) is a network of connected, interconnected gadgets. Privacy issues occasionally arise due to the amount of data generated. However, they have been primarily addressed by blockchain and smart contract technology. While there are still security issues with smart contracts, primarily due to the complexity of writing… More >

  • Open Access

    ARTICLE

    License Plate Recognition via Attention Mechanism

    Longjuan Wang1,2, Chunjie Cao1,2, Binghui Zou1,2, Jun Ye1,2,*, Jin Zhang3

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 1801-1814, 2023, DOI:10.32604/cmc.2023.032785 - 06 February 2023

    Abstract License plate recognition technology use widely in intelligent traffic management and control. Researchers have been committed to improving the speed and accuracy of license plate recognition for nearly 30 years. This paper is the first to propose combining the attention mechanism with YOLO-v5 and LPRnet to construct a new license plate recognition model (LPR-CBAM-Net). Through the attention mechanism CBAM (Convolutional Block Attention Module), the importance of different feature channels in license plate recognition can be re-calibrated to obtain proper attention to features. Force information to achieve the purpose of improving recognition speed and accuracy. Experimental More >

  • Open Access

    ARTICLE

    Vehicle Plate Number Localization Using Memetic Algorithms and Convolutional Neural Networks

    Gibrael Abosamra*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3539-3560, 2023, DOI:10.32604/cmc.2023.032976 - 31 October 2022

    Abstract This paper introduces the third enhanced version of a genetic algorithm-based technique to allow fast and accurate detection of vehicle plate numbers (VPLN) in challenging image datasets. Since binarization of the input image is the most important and difficult step in the detection of VPLN, a hybrid technique is introduced that fuses the outputs of three fast techniques into a pool of connected components objects (CCO) and hence enriches the solution space with more solution candidates. Due to the combination of the outputs of the three binarization techniques, many CCOs are produced into the output… More >

  • Open Access

    ARTICLE

    Deep Learning and SVM-Based Approach for Indian Licence Plate Character Recognition

    Nitin Sharma1, Mohd Anul Haq2, Pawan Kumar Dahiya3, B. R. Marwah4, Reema Lalit5, Nitin Mittal6, Ismail Keshta7,*

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 881-895, 2023, DOI:10.32604/cmc.2023.027899 - 22 September 2022

    Abstract Every developing country relies on transportation, and there has been an exponential expansion in the development of various sorts of vehicles with various configurations, which is a major component strengthening the automobile sector. India is a developing country with increasing road traffic, which has resulted in challenges such as increased road accidents and traffic oversight issues. In the lack of a parametric technique for accurate vehicle recognition, which is a major worry in terms of reliability, high traffic density also leads to mayhem at checkpoints and toll plazas. A system that combines an intelligent domain… More >

  • Open Access

    ARTICLE

    Hybrid Metaheuristics Based License Plate Character Recognition in Smart City

    Esam A. AlQaralleh1, Fahad Aldhaban2, Halah Nasseif2, Bassam A.Y. Alqaralleh2,*, Tamer AbuKhalil3

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5727-5740, 2022, DOI:10.32604/cmc.2022.026780 - 21 April 2022

    Abstract Recent technological advancements have been used to improve the quality of living in smart cities. At the same time, automated detection of vehicles can be utilized to reduce crime rate and improve public security. On the other hand, the automatic identification of vehicle license plate (LP) character becomes an essential process to recognize vehicles in real time scenarios, which can be achieved by the exploitation of optimal deep learning (DL) approaches. In this article, a novel hybrid metaheuristic optimization based deep learning model for automated license plate character recognition (HMODL-ALPCR) technique has been presented for… More >

  • Open Access

    ARTICLE

    Automatic License Plate Recognition System for Vehicles Using a CNN

    Parneet Kaur1, Yogesh Kumar1, Shakeel Ahmed2,*, Abdulaziz Alhumam2, Ruchi Singla3, Muhammad Fazal Ijaz4

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 35-50, 2022, DOI:10.32604/cmc.2022.017681 - 03 November 2021

    Abstract Automatic License Plate Recognition (ALPR) systems are important in Intelligent Transportation Services (ITS) as they help ensure effective law enforcement and security. These systems play a significant role in border surveillance, ensuring safeguards, and handling vehicle-related crime. The most effective approach for implementing ALPR systems utilizes deep learning via a convolutional neural network (CNN). A CNN works on an input image by assigning significance to various features of the image and differentiating them from each other. CNNs are popular for license plate character recognition. However, little has been reported on the results of these systems with More >

  • Open Access

    ARTICLE

    Deep Learning Based License Plate Number Recognition for Smart Cities

    T. Vetriselvi1, E. Laxmi Lydia2, Sachi Nandan Mohanty3,4, Eatedal Alabdulkreem5, Shaha Al-Otaibi6, Amal Al-Rasheed6, Romany F. Mansour7,*

    CMC-Computers, Materials & Continua, Vol.70, No.1, pp. 2049-2064, 2022, DOI:10.32604/cmc.2022.020110 - 07 September 2021

    Abstract Smart city-aspiring urban areas should have a number of necessary elements in place to achieve the intended objective. Precise controlling and management of traffic conditions, increased safety and surveillance, and enhanced incident avoidance and management should be top priorities in smart city management. At the same time, Vehicle License Plate Number Recognition (VLPNR) has become a hot research topic, owing to several real-time applications like automated toll fee processing, traffic law enforcement, private space access control, and road traffic surveillance. Automated VLPNR is a computer vision-based technique which is employed in the recognition of automobiles… More >

  • Open Access

    ARTICLE

    Automatic Vehicle License Plate Recognition Using Optimal Deep Learning Model

    Thavavel Vaiyapuri1, Sachi Nandan Mohanty2, M. Sivaram3, Irina V. Pustokhina4, Denis A. Pustokhin5, K. Shankar6,*

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1881-1897, 2021, DOI:10.32604/cmc.2021.014924 - 05 February 2021

    Abstract The latest advancements in highway research domain and increase inthe number of vehicles everyday led to wider exposure and attention towards the development of efficient Intelligent Transportation System (ITS). One of the popular research areas i.e., Vehicle License Plate Recognition (VLPR) aims at determining the characters that exist in the license plate of the vehicles. The VLPR process is a difficult one due to the differences in viewpoint, shapes, colors, patterns, and non-uniform illumination at the time of capturing images. The current study develops a robust Deep Learning (DL)-based VLPR model using Squirrel Search Algorithm… More >

  • Open Access

    ARTICLE

    Multi Criteria Decision Making System for Parking System

    Manjur Kolhar*, Abdalla Alameen

    Computer Systems Science and Engineering, Vol.36, No.1, pp. 101-116, 2021, DOI:10.32604/csse.2021.014915 - 23 December 2020

    Abstract System supported smart parking can reduce traffic by making it stress free to locate empty parking spaces, hence lowering the risk of unfocussed driving. In this study, we propose a smart parking system using deep learning and an application-based approach. This system has two modules, one module detects and recognizes a license plate (LP), and the other selects a parking space; both modules use deep learning techniques. We used two modules that work independently to detect and recognize an LP by using an image of the vehicle. To detect parking space, only deep learning techniques… More >

Displaying 1-10 on page 1 of 13. Per Page