Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    PROCEEDINGS

    Subdivisional Modelling Method for Matched Metal Additive Manufacturing and Its Implementation on Novel Negative Poisson's Ratio Lattice Structures

    Ruiqi Pan1, Wei Xiong2, Liang Hao1,*, Yan Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011651

    Abstract As metal additive manufacturing (MAM) becomes more widely used in engineering, an increasing number of novel lattice structures are being developed. However, most recently developed lattice structures do not match the requirement of MAM efficiently. Based on the Design for Additive Manufacturing (DfAM), comparing the mainstream implicit and explicit modelling methods, it is proposed to introduce a Subdivisional (Sub-D) modelling method to model lattice structures with better modelling versatility, 3D printability, and mechanical properties. To this end, a novel negative Poisson's ratio (NPR) structure is developed as an example to demonstrate the efficient and wide… More >

  • Open Access

    PROCEEDINGS

    Equivalent Elastic-Plastic Model of BCC Lattice Structures

    Jie Zhang1, Xu Zhou1, Sanqiang Yang1, Moubin Liu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-2, 2024, DOI:10.32604/icces.2024.012192

    Abstract The lattice architecture, characterized by its methodical arrangement of repetitive units, exhibits compactness, uniformity, and lightweight properties. In additive manufacturing, such structures are widely utilized in support structures and internal fillings, playing a significant role in improving manufacturing efficiency and optimizing structural performance [1,2]. However, due to the complex microstructure of lattice materials, it is challenging to describe them using refined finite element models. The development of an equivalent performance model for these materials, employing a periodic single cell to represent the internal architecture for the comprehensive lattice system, can significantly improve computational efficiency and… More >

  • Open Access

    PROCEEDINGS

    Tunable Energy Absorption of Thermoplastic Polyurethane P-type TPMS Lattice Structure via Trimming

    Haoming Mo1,*, Junhao Ding1, Xu Song1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011375

    Abstract Triply periodic minimal surface (TPMS) shell-lattices are attracting increasing attention because of their exceptional mechanical and geometric characteristics. Additive manufactured TPMS structures using thermoplastic polyurethane (TPU) have great application potential in energy absorptions, for which the mechanical properties can be conveniently adjusted to meet diverse requirements. Nevertheless, there is a need for further improvement in the stability and adjustability of energy absorption capacity. This is due to the significant impact of the buckling effect and induced stress fluctuations when the structure is subjected to compression. To alleviate the buckling effect and tune the capability of… More >

  • Open Access

    ARTICLE

    Three-Dimensional Printing Conformal Cooling with Structural Lattices for Plastic Injection Molding

    Suping Shen1,2, Baris Burak Kanbur1,2, Chenlong Wu2, Fei Duan1,2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 397-415, 2024, DOI:10.32604/fhmt.2024.048984 - 20 May 2024

    Abstract The design of three-dimensional printing based conformal cooling channels (CCCs) in injection molding holds great significance. Compared to CCCs, conformal cooling (CC) cavity solutions show promise in delivering enhanced cooling performance for plastic products, although they have been underexplored. In this research, CC cavity is designed within the mold geometry, reinforced by body-centered cubic (BCC) lattice structures to enhance mechanical strength. Three distinct BCC lattice variations have been integrated into the CC cavity: the BCC structure, BCC with cubes, and BCC with pillars. The thermal performances of the BCC lattice-added CC cavity are assessed numerically… More > Graphic Abstract

    Three-Dimensional Printing Conformal Cooling with Structural Lattices for Plastic Injection Molding

  • Open Access

    PROCEEDINGS

    Development of a Graded Lattice Structure Design and Optimization Method with Complex Boundary Surface Constraints

    Zhujiang Wang1,*, Yizhou Wang1, Bin Zhai1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.3, pp. 1-2, 2023, DOI:10.32604/icces.2023.09242

    Abstract Graded lattice structures (GLS) are used widely in the areas of 3D printed sensors, personalized wearable devices, robotics, energy absorption, etc., and have a prospective future in the field of personalized medical devices. The large-scale applications of GLS-based personalized medical devices require a GLS design method that could handle the challenges caused by diverse boundary surface constraints and various requirements of graded mechanical properties [1,2], due to patient-specific care needs. In this work, the proposed automatic seed generation algorithm-based GLS design approach is a prospective solution to promote the wide application of GLS-based personalized medical… More >

  • Open Access

    ARTICLE

    Skeleton-Based Volumetric Parameterizations for Lattice Structures

    Long Chen1,*, Shuxun Liang2, Nan Yan2, Xiangqian Yang2, Baotong Li3

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 687-709, 2023, DOI:10.32604/cmes.2022.021986 - 29 September 2022

    Abstract Lattice structures with excellent physical properties have attracted great research interest. In this paper, a novel volume parametric modeling method based on the skeleton model is proposed for the construction of three-dimensional lattice structures. The skeleton model is divided into three types of nodes. And the corresponding algorithms are utilized to construct diverse types of volume parametric nodes. The unit-cell is assembled with distinct nodes according to the geometric features. The final lattice structure is created by the periodic arrangement of unit-cells. Several different types of volume parametric lattice structures are constructed to prove the More > Graphic Abstract

    Skeleton-Based Volumetric Parameterizations for Lattice Structures

  • Open Access

    ARTICLE

    Multi-Material and Multiscale Topology Design Optimization of Thermoelastic Lattice Structures

    Jun Yan1,2, Qianqian Sui1, Zhirui Fan1, Zunyi Duan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 967-986, 2022, DOI:10.32604/cmes.2022.017708 - 13 December 2021

    Abstract This study establishes a multiscale and multi-material topology optimization model for thermoelastic lattice structures (TLSs) considering mechanical and thermal loading based on the Extended Multiscale Finite Element Method (EMsFEM). The corresponding multi-material and multiscale mathematical formulation have been established with minimizing strain energy and structural mass as the objective function and constraint, respectively. The Solid Isotropic Material with Penalization (SIMP) interpolation scheme has been adopted to realize micro-scale multi-material selection of truss microstructure. The modified volume preserving Heaviside function (VPHF) is utilized to obtain a clear 0/1 material of truss microstructure. Compared with the classic More >

Displaying 1-10 on page 1 of 7. Per Page