Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    NUMERICAL STUDY ON HEAT TRANSFER CHARACTERISTICS OF CORRUGATED TUBE PHASE CHANGE THERMAL ENERGY STORAGE UNIT

    Kun Zhanga,b,* , Zhiyong Lia,b, Jia Yaoa,b

    Frontiers in Heat and Mass Transfer, Vol.19, pp. 1-8, 2022, DOI:10.5098/hmt.19.5

    Abstract Detailed numerical analysis is presented for heat transfer characteristics of charging or discharging process in phase change thermal energy storage unit with inner corrugated tube. The results indicated that the charging or discharging rate of phase change material (PCM) for the case of inner corrugated tube is obviously higher than that in unit with inner plain tube due to the increasing heat transfer surface. The heat transfer rate increase with the increasing mass flow rate. However, when the mass flow rate of heat transfer fluid (HTF) is greater than 0.0315kg/s, the charge and discharge time More >

  • Open Access

    ARTICLE

    Experimental Investigation on Prototype Latent Heat Thermal Battery Charging and Discharging Function Integrated with Solar Collector

    Farhood Sarrafzadeh Javadi1, Hendrik Simon Cornelis Metselaar1,2,*, Poo Balan Ganesan1

    Energy Engineering, Vol.119, No.4, pp. 1587-1610, 2022, DOI:10.32604/ee.2022.020304 - 23 May 2022

    Abstract This paper reports the performance investigation of a newly developed Latent Heat Thermal Battery (LHTB) integrated with a solar collector as the main source of heat. The LHTB is a new solution in the field of thermal storage and developed based on the battery concept in terms of recharge ability, portability and usability as a standalone device. It is fabricated based on the thermal battery storage concept and consists of a plate-fin and tube heat exchanger located inside the battery casing and paraffin wax which is used as a latent heat storage material. Solar thermal… More >

  • Open Access

    REVIEW

    An Updated Review on Low-Temperature Nanocomposites with a Special Focus on Thermal Management in Buildings

    John Paul1, K. Kadirgama1, M. Samykano2,*, R. Saidur3, A. K. Pandey3, R. V. Mohan4

    Energy Engineering, Vol.119, No.4, pp. 1299-1325, 2022, DOI:10.32604/ee.2022.019172 - 23 May 2022

    Abstract

    Buildings contribute to 33% of total global energy consumption, which corresponds to 38% of greenhouse gas emissions. Enhancing building’s energy efficiency remains predominant in mitigating global warming. Advancements in thermal energy storage (TES) techniques using phase change material (PCM) have gained much attention among researchers, primarily to minimize energy consumption and to promote the use of renewable energy sources. PCM technology stays as the most promising technology for developing high-performance and energy-efficient buildings. The major drawback of PCM is its poor thermal conductivity which limits its potential use which could be resolved by dispersing conductive nanofillers.

    More > Graphic Abstract

    An Updated Review on Low-Temperature Nanocomposites with a Special Focus on Thermal Management in Buildings

  • Open Access

    ARTICLE

    Latent Heat Prediction of Nano Enhanced Phase Change Material by ANN Method

    Farzad Jaliliantabar1,2,*, Rizalman Mamat3, Sudhakar Kumarasamy2,4,5

    Energy Engineering, Vol.119, No.3, pp. 847-861, 2022, DOI:10.32604/ee.2022.019051 - 31 March 2022

    Abstract Thermal characteristics of phase change material (PCM) are important in design and utilization of thermal energy storage or other applications. PCMs have great latent heat but suffer from low thermal conductivity. Then, in recent years, nano particles have been added to PCM to improve their thermophysical properties such as thermal conductivity. Effect of this nano particles on thermophysical properties of PCM has been a question and many experimental and numerical studies have been done to investigate them. Artificial intelligence-based approach can be a good candidate to predict thermophysical properties of nano enhance PCM (NEPCM). Then,… More >

  • Open Access

    ARTICLE

    A Water-Heat-Force Coupled Framework for the Preparation of Soils for Application in Frozen Soil Model Test

    Daoming Shen1,*, Xia Zhang2, Jinhong Xia1, Shunqun Li3

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 21-37, 2021, DOI:10.32604/fdmp.2021.010767 - 09 February 2021

    Abstract The freezing of soil containing a liquid is a complex transient heat conduction problem involving phase change and release or absorption of latent heat. Existing efforts have essentially focused on theoretical research and numerical simulations. In the present study, the problem is approached from an experimental point of view using the so-called “freezing model test” method. In particular, in order to establish a precise relationship between the model and the prototype, a temperature similarity criterion is derived using the condition of an equal number of Kosovitch. Similarity is also established with respect to other aspects. More >

  • Open Access

    ARTICLE

    NUMERICAL INVESTIGATION ON THE THERMAL PERFORMANCE OF A CASCADED LATENT HEAT THERMAL ENERGY STORAGE

    Pengda Li, Chao Xu, Zhirong Liao* , Xing Ju, Feng Ye

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-10, 2020, DOI:10.5098/hmt.15.10

    Abstract This study numerically investigates the charging and discharging processes of a three-stages cascaded latent heat thermal energy storage unit using three molten salts as the phase change materials (PCMs). Each stage of the unit is a vertical shell-and-tube heat exchanger, whose shell side is filled with the PCM and air. The liquid fractions, temperatures, and accumulated thermal energy of the PCMs during the fully charging and discharging processes, as well as the effects of the HTF inlet temperature, are analyzed. The results show that lower melting temperature of the PCM causes faster charging rate and More >

  • Open Access

    ARTICLE

    A New Model for the Characterization of Frozen Soil and Related Latent Heat Effects for the Improvement of Ground Freezing Techniques and Its Experimental Verification

    Daoming Shen1, Hua Si1,*, Jinhong Xia1, Shunqun Li2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.1, pp. 63-76, 2019, DOI:10.32604/fdmp.2019.04799

    Abstract The correct determination of thermal parameters, such as thermal conductivity and specific heat of soil during freezing, is the most important and basic problem for the construction of an appropriate freezing method. In this study, a calculation model of three stages of soil temperature was established. At the unfrozen and frozen stages, the specific temperatures of dry soil, water, and ice are known. According to the principle of superposition, a calculation model of unfrozen and frozen soils can be established. Informed by a laboratory experiment, the latent heat of the adjacent zone was calculated for More >

  • Open Access

    ARTICLE

    Investigation of the Melting Coupled Natural Convection of Nano Phase Change Material: A Fan Less Cooling of Heat Sources

    Mustapha FARAJI1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.1, pp. 19-36, 2017, DOI:10.3970/fdmp.2017.013.019

    Abstract A two-dimensional numerical model that accounts for heat transfer by conduction and natural convection in the molten region of nano enhanced Phase Change Material (PCM) is performed. Numerical investigations were conducted using an enthalpy- porosity method in order to examine the impact of the dispersion of copper (CuO) nanoparticles on the heat source temperature and the effect on the heat sink secured working time and the melting rate. Results show that heat spreads more easily along the conducting plate and to the PCM and, consequently, the PCM melts rapidly and the heat source is efficiency More >

  • Open Access

    ARTICLE

    Numerical Study of Melting Coupled Natural Convection Around Localized Heat Sources

    Mustapha Faraji1, El Alami Mustapha, Najam Mostafa

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.2, pp. 279-298, 2014, DOI:10.3970/fdmp.2014.010.279

    Abstract A study is reported of heat transfer and melting in a fan-less thermal management system consisting of an insulated horizontal cavity filled with a phase change material (PCM) and heated from below by a conducting plate supporting three identical protruding heat sources. Such a PCM enclosure can be used as a heat sink for the cooling of electronic components. The advantage of this cooling strategy is that PCMs characterized by high energy storage density and small transition temperature interval, are able to store a high amount of heat (thereby providing efficient passive cooling). A two-dimensional More >

Displaying 1-10 on page 1 of 9. Per Page