Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Exact Computer Modeling of Photovoltaic Sources with Lambert-W Explicit Solvers for Real-Time Emulation and Controller Verification

    Abdulaziz Almalaq1, Ambe Harrison2,*, Ibrahim Alsaleh1, Abdullah Alassaf1, Mashari Alangari1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074815 - 29 January 2026

    Abstract We present a computer-modeling framework for photovoltaic (PV) source emulation that preserves the exact single-diode physics while enabling iteration-free, real-time evaluation. We derive two closed-form explicit solvers based on the Lambert W function: a voltage-driven V-Lambert solver for high-fidelity I–V computation and a resistance-driven R-Lambert solver designed for seamless integration in a closed-loop PV emulator. Unlike Taylor-linearized explicit models, our proposed formulation retains the exponential nonlinearity of the PV equations. It employs a numerically stable analytical evaluation that eliminates the need for lookup tables and root-finding, all while maintaining limited computational costs and a small… More >

  • Open Access

    ARTICLE

    The Lambert-G Family: Properties, Inference, and Applications

    Jamal N. Al Abbasi1, Ahmed Z. Afify2,*, Badr Alnssyan3,*, Mustafa S. Shama4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 513-536, 2024, DOI:10.32604/cmes.2024.046533 - 16 April 2024

    Abstract This study proposes a new flexible family of distributions called the Lambert-G family. The Lambert family is very flexible and exhibits desirable properties. Its three-parameter special sub-models provide all significant monotonic and non-monotonic failure rates. A special sub-model of the Lambert family called the Lambert-Lomax (LL) distribution is investigated. General expressions for the LL statistical properties are established. Characterizations of the LL distribution are addressed mathematically based on its hazard function. The estimation of the LL parameters is discussed using six estimation methods. The performance of this estimation method is explored through simulation experiments. The More >

Displaying 1-10 on page 1 of 2. Per Page