Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2,246)
  • Open Access

    REVIEW

    GNN: Core Branches, Integration Strategies and Applications

    Wenfeng Zheng1, Guangyu Xu2, Siyu Lu3, Junmin Lyu4, Feng Bao5,*, Lirong Yin6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075741 - 29 January 2026

    Abstract Graph Neural Networks (GNNs), as a deep learning framework specifically designed for graph-structured data, have achieved deep representation learning of graph data through message passing mechanisms and have become a core technology in the field of graph analysis. However, current reviews on GNN models are mainly focused on smaller domains, and there is a lack of systematic reviews on the classification and applications of GNN models. This review systematically synthesizes the three canonical branches of GNN, Graph Convolutional Network (GCN), Graph Attention Network (GAT), and Graph Sampling Aggregation Network (GraphSAGE), and analyzes their integration pathways More >

  • Open Access

    ARTICLE

    Neuro-Symbolic Graph Learning for Causal Inference and Continual Learning in Mental-Health Risk Assessment

    Monalisa Jena1, Noman Khan2,*, Mi Young Lee3,*, Seungmin Rho3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075119 - 29 January 2026

    Abstract Mental-health risk detection seeks early signs of distress from social media posts and clinical transcripts to enable timely intervention before crises. When such risks go undetected, consequences can escalate to self-harm, long-term disability, reduced productivity, and significant societal and economic burden. Despite recent advances, detecting risk from online text remains challenging due to heterogeneous language, evolving semantics, and the sequential emergence of new datasets. Effective solutions must encode clinically meaningful cues, reason about causal relations, and adapt to new domains without forgetting prior knowledge. To address these challenges, this paper presents a Continual Neuro-Symbolic Graph… More >

  • Open Access

    REVIEW

    The Transparency Revolution in Geohazard Science: A Systematic Review and Research Roadmap for Explainable Artificial Intelligence

    Moein Tosan1,*, Vahid Nourani2,3, Ozgur Kisi4,5,6, Yongqiang Zhang7, Sameh A. Kantoush8, Mekonnen Gebremichael9, Ruhollah Taghizadeh-Mehrjardi10, Jinhui Jeanne Huang11

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074768 - 29 January 2026

    Abstract The integration of machine learning (ML) into geohazard assessment has successfully instigated a paradigm shift, leading to the production of models that possess a level of predictive accuracy previously considered unattainable. However, the black-box nature of these systems presents a significant barrier, hindering their operational adoption, regulatory approval, and full scientific validation. This paper provides a systematic review and synthesis of the emerging field of explainable artificial intelligence (XAI) as applied to geohazard science (GeoXAI), a domain that aims to resolve the long-standing trade-off between model performance and interpretability. A rigorous synthesis of 87 foundational… More >

  • Open Access

    ARTICLE

    Solar Photovoltaic System as a Sustainable Solution for Electric Load Shortage in Baghdad: A Design and Economic Study

    Fadhil M. Oleiwi1, Jaber O. Dahloos2, Amer Resen Kalash3, Hasanain A. Abdul Wahhab3, Miqdam T. Chaichan1,4,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073313 - 27 January 2026

    Abstract In the present study, researchers examined a solar off-grid-connected photovoltaic system for a family house in the city of Baghdad. The design was created with the help of the “How to Design PV Program” and the “Renewable Energy Investment Calculator (REICAL)” software (Version 1.1). In Iraq, the national grid provides around 71% of the overall electricity demand, though this drops to nearly 50% during extremely hot and cold months, where the supply alternates between four hours on and four hours off. During the off periods, power is generated by local generators at high costs. To… More >

  • Open Access

    REVIEW

    Evolution or Revolution in Colorectal Cancer Treatment: Present and Future of New Therapeutic Options. A Narrative Review

    Urszula Częścik1,2,#, Martyna Gryglas3, Arkadiusz Szterk4, Sylwia Flis3,#,*

    Oncology Research, Vol.34, No.2, 2026, DOI:10.32604/or.2025.067449 - 19 January 2026

    Abstract Colorectal cancer (CRC) is the third most common malignancy worldwide and the second leading cause of cancer-related deaths, accounting for approximately 10% of all cancer cases. By 2050, CRC incidence is expected to rise substantially, driven by population aging and greater exposure to risk factors in developing countries. Despite advances in medicine and pharmacy, the effectiveness of available treatments remains limited, underscoring the urgent need for innovative therapeutic strategies. This review summarizes and critically evaluates currently available CRC therapies and explores new emerging directions. Particular attention is given to the role of immunotherapy, targeted therapies,… More >

  • Open Access

    ARTICLE

    Hybrid Malware Detection Model for Internet of Things Environment

    Abdul Rahaman Wahab Sait1,*, Yazeed Alkhurayyif2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072481 - 12 January 2026

    Abstract Malware poses a significant threat to the Internet of Things (IoT). It enables unauthorized access to devices in the IoT environment. The lack of unique architectural standards causes challenges in developing robust malware detection (MD) models. The existing models demand substantial computational resources. This study intends to build a lightweight MD model to detect anomalies in IoT networks. The authors develop a transformation technique, converting the malware binaries into images. MobileNet V2 is fine-tuned using improved grey wolf optimization (IGWO) to extract crucial features of malicious and benign samples. The ResNeXt model is combined with… More >

  • Open Access

    ARTICLE

    Visual Detection Algorithms for Counter-UAV in Low-Altitude Air Defense

    Minghui Li1, Hongbo Li1,*, Jiaqi Zhu2, Xupeng Zhang1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072406 - 12 January 2026

    Abstract To address the challenge of real-time detection of unauthorized drone intrusions in complex low-altitude urban environments such as parks and airports, this paper proposes an enhanced MBS-YOLO (Multi-Branch Small Target Detection YOLO) model for anti-drone object detection, based on the YOLOv8 architecture. To overcome the limitations of existing methods in detecting small objects within complex backgrounds, we designed a C2f-Pu module with excellent feature extraction capability and a more compact parameter set, aiming to reduce the model’s computational complexity. To improve multi-scale feature fusion, we construct a Multi-Branch Feature Pyramid Network (MB-FPN) that employs a… More >

  • Open Access

    ARTICLE

    CCLNet: An End-to-End Lightweight Network for Small-Target Forest Fire Detection in UAV Imagery

    Qian Yu1,2, Gui Zhang2,*, Ying Wang1, Xin Wu2, Jiangshu Xiao2, Wenbing Kuang1, Juan Zhang2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072172 - 12 January 2026

    Abstract Detecting small forest fire targets in unmanned aerial vehicle (UAV) images is difficult, as flames typically cover only a very limited portion of the visual scene. This study proposes Context-guided Compact Lightweight Network (CCLNet), an end-to-end lightweight model designed to detect small forest fire targets while ensuring efficient inference on devices with constrained computational resources. CCLNet employs a three-stage network architecture. Its key components include three modules. C3F-Convolutional Gated Linear Unit (C3F-CGLU) performs selective local feature extraction while preserving fine-grained high-frequency flame details. Context-Guided Feature Fusion Module (CGFM) replaces plain concatenation with triplet-attention interactions to… More >

  • Open Access

    ARTICLE

    Constraint Intensity-Driven Evolutionary Multitasking for Constrained Multi-Objective Optimization

    Leyu Zheng1, Mingming Xiao1,*, Yi Ren2, Ke Li1, Chang Sun1

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072036 - 12 January 2026

    Abstract In a wide range of engineering applications, complex constrained multi-objective optimization problems (CMOPs) present significant challenges, as the complexity of constraints often hampers algorithmic convergence and reduces population diversity. To address these challenges, we propose a novel algorithm named Constraint Intensity-Driven Evolutionary Multitasking (CIDEMT), which employs a two-stage, tri-task framework to dynamically integrates problem structure and knowledge transfer. In the first stage, three cooperative tasks are designed to explore the Constrained Pareto Front (CPF), the Unconstrained Pareto Front (UPF), and the ε-relaxed constraint boundary, respectively. A CPF-UPF relationship classifier is employed to construct a problem-type-aware… More >

  • Open Access

    ARTICLE

    An RMD-YOLOv11 Approach for Typical Defect Detection of PV Modules

    Tao Geng1, Shuaibing Li1,*, Yunyun Yun1, Yongqiang Kang1, Hongwei Li2, Junmin Zhu2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071644 - 12 January 2026

    Abstract In order to address the challenges posed by complex background interference, high miss-detection rates of micro-scale defects, and limited model deployment efficiency in photovoltaic (PV) module defect detection, this paper proposes an efficient detection framework based on an improved YOLOv11 architecture. First, a Re-parameterized Convolution (RepConv) module is integrated into the backbone to enhance the model’s sensitivity to fine-grained defects—such as micro-cracks and hot spots—while maintaining high inference efficiency. Second, a Multi-Scale Feature Fusion Convolutional Block Attention Mechanism (MSFF-CBAM) is designed to guide the network toward critical defect regions by jointly modeling channel-wise and spatial… More >

Displaying 1-10 on page 1 of 2246. Per Page