Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (472)
  • Open Access

    ARTICLE

    CRBFT: A Byzantine Fault-Tolerant Consensus Protocol Based on Collaborative Filtering Recommendation for Blockchains

    Xiangyu Wu1, Xuehui Du1,*, Qiantao Yang1,2, Aodi Liu1, Na Wang1, Wenjuan Wang1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1491-1519, 2024, DOI:10.32604/cmc.2024.052708

    Abstract Blockchain has been widely used in finance, the Internet of Things (IoT), supply chains, and other scenarios as a revolutionary technology. Consensus protocol plays a vital role in blockchain, which helps all participants to maintain the storage state consistently. However, with the improvement of network environment complexity and system scale, blockchain development is limited by the performance, security, and scalability of the consensus protocol. To address this problem, this paper introduces the collaborative filtering mechanism commonly used in the recommendation system into the Practical Byzantine Fault Tolerance (PBFT) and proposes a Byzantine fault-tolerant (BFT) consensus… More >

  • Open Access

    ARTICLE

    A Multivariate Relevance Frequency Analysis Based Feature Selection for Classification of Short Text Data

    Saravanan Arumugam*

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 989-1008, 2024, DOI:10.32604/csse.2024.051770

    Abstract Text mining presents unique challenges in extracting meaningful information from the vast volumes of digital documents. Traditional filter feature selection methods often fall short in handling the complexities of short text data. To address this issue, this paper presents a novel approach to feature selection in text classification, aiming to overcome challenges posed by high dimensionality and reduced accuracy in the face of increasing digital document volumes. Unlike traditional filter feature selection techniques, the proposed method, Multivariate Relevance Frequency Analysis, offers a tailored solution for diverse text data types. By integrating positive, negative, and dependency… More >

  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access

    ARTICLE

    Joint Modeling of Citation Networks and User Preferences for Academic Tagging Recommender System

    Weiming Huang1,2, Baisong Liu1,*, Zhaoliang Wang1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4449-4469, 2024, DOI:10.32604/cmc.2024.050389

    Abstract In the tag recommendation task on academic platforms, existing methods disregard users’ customized preferences in favor of extracting tags based just on the content of the articles. Besides, it uses co-occurrence techniques and tries to combine nodes’ textual content for modelling. They still do not, however, directly simulate many interactions in network learning. In order to address these issues, we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations. Specifically, we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles… More >

  • Open Access

    ARTICLE

    Power Quality Disturbance Identification Basing on Adaptive Kalman Filter and Multi-Scale Channel Attention Fusion Convolutional Network

    Feng Zhao, Guangdi Liu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.7, pp. 1865-1882, 2024, DOI:10.32604/ee.2024.048209

    Abstract In light of the prevailing issue that the existing convolutional neural network (CNN) power quality disturbance identification method can only extract single-scale features, which leads to a lack of feature information and weak anti-noise performance, a new approach for identifying power quality disturbances based on an adaptive Kalman filter (KF) and multi-scale channel attention (MS-CAM) fused convolutional neural network is suggested. Single and composite-disruption signals are generated through simulation. The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal, and subsequent integration of multi-scale features into the conventional CNN… More >

  • Open Access

    ARTICLE

    Silencing of ATP4B of ATPase H+/K+ Transporting Beta Subunit by Intragenic Epigenetic Alteration in Human Gastric Cancer Cells

    Shuye Lin*†, Bonan Lin*, Xiaoyue Wang*, Yuanming Pan, Qing Xu*, Jin-Shen He*, Wanghua Gong§, Rui Xing, Yuqi He, Lihua Guo*, Youyong Lu, Ji Ming Wang, Jiaqiang Huang*†

    Oncology Research, Vol.25, No.3, pp. 317-329, 2017, DOI:10.3727/096504016X14734735156265

    Abstract The ATPase H+/K+ Transporting Beta Subunit (ATP4B) encodes the b subunit of the gastric H+, K+ -ATPase, which controls gastric acid secretion and is therefore a target for acid reduction. Downregulation of ATP4B was recently observed in human gastric cancer (GC) without known mechanisms. In the present study, we demonstrated that ATP4B expression was decreased in human GC tissues and cell lines associated with DNA hypermethylation and histone hypoacetylation of histone H3 lysine 9 at its intragenic region close to the transcriptional start site. The expression of ATP4B was restored in GC cell lines by treatment with… More >

  • Open Access

    ARTICLE

    Novel Static Security and Stability Control of Power Systems Based on Artificial Emotional Lazy Q-Learning

    Tao Bao*, Xiyuan Ma, Zhuohuan Li, Duotong Yang, Pengyu Wang, Changcheng Zhou

    Energy Engineering, Vol.121, No.6, pp. 1713-1737, 2024, DOI:10.32604/ee.2023.046150

    Abstract The stability problem of power grids has become increasingly serious in recent years as the size of novel power systems increases. In order to improve and ensure the stable operation of the novel power system, this study proposes an artificial emotional lazy Q-learning method, which combines artificial emotion, lazy learning, and reinforcement learning for static security and stability analysis of power systems. Moreover, this study compares the analysis results of the proposed method with those of the small disturbance method for a stand-alone power system and verifies that the proposed lazy Q-learning method is able More >

  • Open Access

    ARTICLE

    Computational Analysis of Selective Laser Sintering of Inconel 625

    Bin Xiao*, Byoung Hee You, Tongdan Jin

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 417-432, 2024, DOI:10.32604/fhmt.2024.048739

    Abstract A two-dimensional multi-physics finite element model is developed to simulate the Selective Laser Sintering (SLS) process using Inconel 625 powders. The validity of the developed model is first assessed by comparing its results with experimental data. Various factors such as phase transition, recoil pressure, surface tension, and the Marangoni force are considered. The study’s findings underscore that the morphology and thermal-fluid dynamics of the molten pool in the SLS process are predominantly shaped by the influence of the Marangoni force and recoil pressure acting on its surface. The recoil pressure at the front of the… More >

  • Open Access

    ARTICLE

    Alternative Method of Constructing Granular Neural Networks

    Yushan Yin1, Witold Pedrycz1,2, Zhiwu Li1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 623-650, 2024, DOI:10.32604/cmc.2024.048787

    Abstract Utilizing granular computing to enhance artificial neural network architecture, a new type of network emerges—the granular neural network (GNN). GNNs offer distinct advantages over their traditional counterparts: The ability to process both numerical and granular data, leading to improved interpretability. This paper proposes a novel design method for constructing GNNs, drawing inspiration from existing interval-valued neural networks built upon NNNs. However, unlike the proposed algorithm in this work, which employs interval values or triangular fuzzy numbers for connections, existing methods rely on a pre-defined numerical network. This new method utilizes a uniform distribution of information More >

  • Open Access

    REVIEW

    A Review on Finite Element Alternating Methods for Analyzing 2D and 3D Cracks

    Jai Hak Park*

    Digital Engineering and Digital Twin, Vol.2, pp. 79-101, 2024, DOI:10.32604/dedt.2024.047280

    Abstract A finite element alternating method has been known as a very convenient and accurate method to solve two and three-dimensional crack problems. In this method, a general crack problem is solved by a superposition of two solutions. One is a finite element solution for a finite body without a crack, and the other is an analytical solution for a crack in an infinite body. Since a crack is not considered in a finite element model, generating a model is very simple. The method is especially very convenient for a fatigue crack growth simulation. Over the More >

Displaying 1-10 on page 1 of 472. Per Page