Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Error Analysis of Geomagnetic Field Reconstruction Model Using Negative Learning for Seismic Anomaly Detection

    Nur Syaiful Afrizal1, Khairul Adib Yusof1,2,*, Lokman Hakim Muhamad1, Nurul Shazana Abdul Hamid2,3, Mardina Abdullah2,4, Mohd Amiruddin Abd Rahman1, Syamsiah Mashohor5, Masashi Hayakawa6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.066421 - 09 December 2025

    Abstract Detecting geomagnetic anomalies preceding earthquakes is a challenging yet promising area of research that has gained increasing attention in recent years. This study introduces a novel reconstruction-based modeling approach enhanced by negative learning, employing a Bidirectional Long Short-Term Memory (BiLSTM) network explicitly trained to accurately reconstruct non-seismic geomagnetic signals while intentionally amplifying reconstruction errors for seismic signals. By penalizing the model for accurately reconstructing seismic anomalies, the negative learning approach effectively magnifies the differences between normal and anomalous data. This strategic differentiation enhances the sensitivity of the BiLSTM network, enabling improved detection of subtle geomagnetic More >

  • Open Access

    ARTICLE

    A Dual-Attention CNN-BiLSTM Model for Network Intrusion Detection

    Zheng Zhang1,2, Jie Hao2, Liquan Chen1,*, Tianhao Hou2, Yanan Liu2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068372 - 10 November 2025

    Abstract With the increasing severity of network security threats, Network Intrusion Detection (NID) has become a key technology to ensure network security. To address the problem of low detection rate of traditional intrusion detection models, this paper proposes a Dual-Attention model for NID, which combines Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to design two modules: the FocusConV and the TempoNet module. The FocusConV module, which automatically adjusts and weights CNN extracted local features, focuses on local features that are more important for intrusion detection. The TempoNet module focuses on global information, identifies… More >

  • Open Access

    ARTICLE

    Fatigue Life Prediction of Composite Materials Based on BO-CNN-BiLSTM Model and Ultrasonic Guided Waves

    Mengke Ding1, Jun Li1,2,*, Dongyue Gao1,*, Guotai Zhou2, Borui Wang1, Zhanjun Wu1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 597-612, 2025, DOI:10.32604/cmc.2025.067907 - 29 August 2025

    Abstract Throughout the composite structure’s lifespan, it is subject to a range of environmental factors, including loads, vibrations, and conditions involving heat and humidity. These factors have the potential to compromise the integrity of the structure. The estimation of the fatigue life of composite materials is imperative for ensuring the structural integrity of these materials. In this study, a methodology is proposed for predicting the fatigue life of composites that integrates ultrasonic guided waves and machine learning modeling. The method first screens the ultrasonic guided wave signal features that are significantly affected by fatigue damage. Subsequently,… More >

  • Open Access

    ARTICLE

    Few-Short Photovoltaic Systems Predictions Algorithm in Cold-Wave Weather via WOA-CNN-LSTM Model

    Ruiheng Pan*, Shuyan Wang, Yihan Huang, Gang Ma

    Energy Engineering, Vol.122, No.8, pp. 3079-3098, 2025, DOI:10.32604/ee.2025.065124 - 24 July 2025

    Abstract Contemporary power network planning faces critical challenges from intensifying climate variability, including greenhouse effect amplification, extreme precipitation anomalies, and persistent thermal extremes. These meteorological disruptions compromise the reliability of renewable energy generation forecasts, particularly in photovoltaic (PV) systems. However, current predictive methodologies exhibit notable deficiencies in extreme weather monitoring, systematic transient phenomena analysis, and preemptive operational strategies, especially for cold-wave weather. In order to address these limitations, we propose a dual-phase data enhancement protocol that takes advantage of Time-series Generative Adversarial Networks (TimeGAN) for temporal pattern expansion and the K-medoids clustering algorithm for synthetic data… More >

  • Open Access

    ARTICLE

    A Comparative Study of Optimized-LSTM Models Using Tree-Structured Parzen Estimator for Traffic Flow Forecasting in Intelligent Transportation

    Hamza Murad Khan1, Anwar Khan1,*, Santos Gracia Villar2,3,4, Luis Alonso Dzul Lopez2,5,6, Abdulaziz Almaleh7, Abdullah M. Al-Qahtani8

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 3369-3388, 2025, DOI:10.32604/cmc.2025.060474 - 16 April 2025

    Abstract Traffic forecasting with high precision aids Intelligent Transport Systems (ITS) in formulating and optimizing traffic management strategies. The algorithms used for tuning the hyperparameters of the deep learning models often have accurate results at the expense of high computational complexity. To address this problem, this paper uses the Tree-structured Parzen Estimator (TPE) to tune the hyperparameters of the Long Short-term Memory (LSTM) deep learning framework. The Tree-structured Parzen Estimator (TPE) uses a probabilistic approach with an adaptive searching mechanism by classifying the objective function values into good and bad samples. This ensures fast convergence in… More >

  • Open Access

    ARTICLE

    FractalNet-LSTM Model for Time Series Forecasting

    Nataliya Shakhovska, Volodymyr Shymanskyi*, Maksym Prymachenko

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4469-4484, 2025, DOI:10.32604/cmc.2025.062675 - 06 March 2025

    Abstract Time series forecasting is important in the fields of finance, energy, and meteorology, but traditional methods often fail to cope with the complex nonlinear and nonstationary processes of real data. In this paper, we propose the FractalNet-LSTM model, which combines fractal convolutional units with recurrent long short-term memory (LSTM) layers to model time series efficiently. To test the effectiveness of the model, data with complex structures and patterns, in particular, with seasonal and cyclical effects, were used. To better demonstrate the obtained results and the formed conclusions, the model performance was shown on the datasets More >

  • Open Access

    ARTICLE

    Cloud-Based Deep Learning for Real-Time URL Anomaly Detection: LSTM/GRU and CNN/LSTM Models

    Ayman Noor*

    Computer Systems Science and Engineering, Vol.49, pp. 259-286, 2025, DOI:10.32604/csse.2025.060387 - 21 February 2025

    Abstract Precisely forecasting the performance of Deep Learning (DL) models, particularly in critical areas such as Uniform Resource Locator (URL)-based threat detection, aids in improving systems developed for difficult tasks. In cybersecurity, recognizing harmful URLs is vital to lowering risks associated with phishing, malware, and other online-based attacks. Since it directly affects the model’s capacity to differentiate between benign and harmful URLs, finding the optimum mix of hyperparameters in DL models is a significant difficulty. Two commonly used architectures for sequential and spatial data processing, Long Short-Term Memory (LSTM)/Gated Recurrent Unit (GRU) and Convolutional Neural Network… More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Based on DBSCAN-SVM Data Cleaning and PSO-LSTM Model

    Yujin Liu1, Zhenkai Zhang1, Li Ma1, Yan Jia1,2,*, Weihua Yin3, Zhifeng Liu3

    Energy Engineering, Vol.121, No.10, pp. 3019-3035, 2024, DOI:10.32604/ee.2024.052594 - 11 September 2024

    Abstract Accurate short-term photovoltaic (PV) power prediction helps to improve the economic efficiency of power stations and is of great significance to the arrangement of grid scheduling plans. In order to improve the accuracy of PV power prediction further, this paper proposes a data cleaning method combining density clustering and support vector machine. It constructs a short-term PV power prediction model based on particle swarm optimization (PSO) optimized Long Short-Term Memory (LSTM) network. Firstly, the input features are determined using Pearson’s correlation coefficient. The feature information is clustered using density-based spatial clustering of applications with noise More >

  • Open Access

    ARTICLE

    Leveraging User-Generated Comments and Fused BiLSTM Models to Detect and Predict Issues with Mobile Apps

    Wael M. S. Yafooz*, Abdullah Alsaeedi

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 735-759, 2024, DOI:10.32604/cmc.2024.048270 - 25 April 2024

    Abstract In the last decade, technical advancements and faster Internet speeds have also led to an increasing number of mobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobile apps. The use of these apps eases our daily lives, and all customers who need any type of service can access it easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digital services to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services, particularly during two large occasions,… More >

  • Open Access

    ARTICLE

    Exploring Sequential Feature Selection in Deep Bi-LSTM Models for Speech Emotion Recognition

    Fatma Harby1, Mansor Alohali2, Adel Thaljaoui2,3,*, Amira Samy Talaat4

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2689-2719, 2024, DOI:10.32604/cmc.2024.046623 - 27 February 2024

    Abstract Machine Learning (ML) algorithms play a pivotal role in Speech Emotion Recognition (SER), although they encounter a formidable obstacle in accurately discerning a speaker’s emotional state. The examination of the emotional states of speakers holds significant importance in a range of real-time applications, including but not limited to virtual reality, human-robot interaction, emergency centers, and human behavior assessment. Accurately identifying emotions in the SER process relies on extracting relevant information from audio inputs. Previous studies on SER have predominantly utilized short-time characteristics such as Mel Frequency Cepstral Coefficients (MFCCs) due to their ability to capture… More >

Displaying 1-10 on page 1 of 25. Per Page