Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (298)
  • Open Access

    ARTICLE

    MFCCT: A Robust Spectral-Temporal Fusion Method with DeepConvLSTM for Human Activity Recognition

    Rashid Jahangir1,*, Nazik Alturki2, Muhammad Asif Nauman3, Faiqa Hanif1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071574 - 09 December 2025

    Abstract Human activity recognition (HAR) is a method to predict human activities from sensor signals using machine learning (ML) techniques. HAR systems have several applications in various domains, including medicine, surveillance, behavioral monitoring, and posture analysis. Extraction of suitable information from sensor data is an important part of the HAR process to recognize activities accurately. Several research studies on HAR have utilized Mel frequency cepstral coefficients (MFCCs) because of their effectiveness in capturing the periodic pattern of sensor signals. However, existing MFCC-based approaches often fail to capture sufficient temporal variability, which limits their ability to distinguish… More >

  • Open Access

    ARTICLE

    Error Analysis of Geomagnetic Field Reconstruction Model Using Negative Learning for Seismic Anomaly Detection

    Nur Syaiful Afrizal1, Khairul Adib Yusof1,2,*, Lokman Hakim Muhamad1, Nurul Shazana Abdul Hamid2,3, Mardina Abdullah2,4, Mohd Amiruddin Abd Rahman1, Syamsiah Mashohor5, Masashi Hayakawa6,7

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-16, 2026, DOI:10.32604/cmc.2025.066421 - 09 December 2025

    Abstract Detecting geomagnetic anomalies preceding earthquakes is a challenging yet promising area of research that has gained increasing attention in recent years. This study introduces a novel reconstruction-based modeling approach enhanced by negative learning, employing a Bidirectional Long Short-Term Memory (BiLSTM) network explicitly trained to accurately reconstruct non-seismic geomagnetic signals while intentionally amplifying reconstruction errors for seismic signals. By penalizing the model for accurately reconstructing seismic anomalies, the negative learning approach effectively magnifies the differences between normal and anomalous data. This strategic differentiation enhances the sensitivity of the BiLSTM network, enabling improved detection of subtle geomagnetic More >

  • Open Access

    ARTICLE

    An Optimized Customer Churn Prediction Approach Based on Regularized Bidirectional Long Short-Term Memory Model

    Adel Saad Assiri1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-21, 2026, DOI:10.32604/cmc.2025.069826 - 10 November 2025

    Abstract Customer churn is the rate at which customers discontinue doing business with a company over a given time period. It is an essential measure for businesses to monitor high churn rates, as they often indicate underlying issues with services, products, or customer experience, resulting in considerable income loss. Prediction of customer churn is a crucial task aimed at retaining customers and maintaining revenue growth. Traditional machine learning (ML) models often struggle to capture complex temporal dependencies in client behavior data. To address this, an optimized deep learning (DL) approach using a Regularized Bidirectional Long Short-Term… More >

  • Open Access

    ARTICLE

    A Transformer-Based Deep Learning Framework with Semantic Encoding and Syntax-Aware LSTM for Fake Electronic News Detection

    Hamza Murad Khan1, Shakila Basheer2, Mohammad Tabrez Quasim3, Raja`a Al-Naimi4, Vijaykumar Varadarajan5, Anwar Khan1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069327 - 10 November 2025

    Abstract With the increasing growth of online news, fake electronic news detection has become one of the most important paradigms of modern research. Traditional electronic news detection techniques are generally based on contextual understanding, sequential dependencies, and/or data imbalance. This makes distinction between genuine and fabricated news a challenging task. To address this problem, we propose a novel hybrid architecture, T5-SA-LSTM, which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attention-enhanced (SA) Long Short-Term Memory (LSTM). The LSTM is trained using the Adam optimizer, which provides faster and more stable convergence compared… More >

  • Open Access

    ARTICLE

    Intrusion Detection and Security Attacks Mitigation in Smart Cities with Integration of Human-Computer Interaction

    Abeer Alnuaim*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.069110 - 10 November 2025

    Abstract The rapid digitalization of urban infrastructure has made smart cities increasingly vulnerable to sophisticated cyber threats. In the evolving landscape of cybersecurity, the efficacy of Intrusion Detection Systems (IDS) is increasingly measured by technical performance, operational usability, and adaptability. This study introduces and rigorously evaluates a Human-Computer Interaction (HCI)-Integrated IDS with the utilization of Convolutional Neural Network (CNN), CNN-Long Short Term Memory (LSTM), and Random Forest (RF) against both a Baseline Machine Learning (ML) and a Traditional IDS model, through an extensive experimental framework encompassing many performance metrics, including detection latency, accuracy, alert prioritization, classification… More >

  • Open Access

    ARTICLE

    A Dual-Attention CNN-BiLSTM Model for Network Intrusion Detection

    Zheng Zhang1,2, Jie Hao2, Liquan Chen1,*, Tianhao Hou2, Yanan Liu2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-22, 2026, DOI:10.32604/cmc.2025.068372 - 10 November 2025

    Abstract With the increasing severity of network security threats, Network Intrusion Detection (NID) has become a key technology to ensure network security. To address the problem of low detection rate of traditional intrusion detection models, this paper proposes a Dual-Attention model for NID, which combines Convolutional Neural Network (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) to design two modules: the FocusConV and the TempoNet module. The FocusConV module, which automatically adjusts and weights CNN extracted local features, focuses on local features that are more important for intrusion detection. The TempoNet module focuses on global information, identifies… More >

  • Open Access

    ARTICLE

    Explore Advanced Hybrid Deep Learning for Enhanced Wireless Signal Detection in 5G OFDM Systems

    Ahmed K. Ali1, Jungpil Shin2,*, Yujin Lim3,*, Da-Hun Seong3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4245-4278, 2025, DOI:10.32604/cmes.2025.073871 - 23 December 2025

    Abstract Single-signal detection in orthogonal frequency-division multiplexing (OFDM) systems presents a challenge due to the time-varying nature of wireless channels. Although conventional methods have limitations, particularly in multi-input multioutput orthogonal frequency division multiplexing (MIMO-OFDM) systems, this paper addresses this problem by exploring advanced deep learning approaches for combined channel estimation and signal detection. Specifically, we propose two hybrid architectures that integrate a convolutional neural network (CNN) with a recurrent neural network (RNN), namely, CNN-long short-term memory (CNN-LSTM) and CNN-bidirectional-LSTM (CNN-Bi-LSTM), designed to enhance signal detection performance in MIMO-OFDM systems. The proposed CNN-LSTM and CNN-Bi-LSTM architectures are… More >

  • Open Access

    ARTICLE

    Multi-Stage Centralized Energy Management for Interconnected Microgrids: Hybrid Forecasting, Climate-Resilient, and Sustainable Optimization

    Mohamed Kouki1, Nahid Osman2, Mona Gafar3, Ragab A. El-Sehiemy4,5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3783-3811, 2025, DOI:10.32604/cmes.2025.071964 - 23 December 2025

    Abstract The growing integration of nondispatchable renewable energy sources (PV, wind) and the need to cut CO2 emissions make energy management crucial. Microgrids provide a framework for RES integration but face challenges from intermittency, fluctuating loads, cost optimization, and uncertainty in real-time balancing. Accurate short-term forecasting of solar generation and demand is vital for reliable and sustainable operation. While stochastic and machine learning methods are used, they struggle with limited data, complex temporal patterns, and scalability. Key challenges include capturing seasonal to weekly variations and modeling sudden fluctuations in generation and consumption. To address… More >

  • Open Access

    ARTICLE

    Comparison of Objective Forecasting Method Fit with Electrical Consumption Characteristics in Timor-Leste

    Ricardo Dominico Da Silva1,2, Jangkung Raharjo1,3,*, Sudarmono Sasmono1,3

    Energy Engineering, Vol.122, No.12, pp. 5073-5090, 2025, DOI:10.32604/ee.2025.071545 - 27 November 2025

    Abstract The rapid development of technology has led to an ever-increasing demand for electrical energy. In the context of Timor-Leste, which still relies on fossil energy sources with high operational costs and significant environmental impacts, electricity load forecasting is a strategic measure to support the energy transition towards the Net Zero Emission (NZE) target by 2050. This study aims to utilize historical electricity load data for the period 2013–2024, as well as data on external factors affecting electricity consumption, to forecast electricity load in Timor-Leste in the next 10 years (2025–2035). The forecasting results are expected… More >

  • Open Access

    ARTICLE

    Quantum Genetic Algorithm Based Ensemble Learning for Detection of Atrial Fibrillation Using ECG Signals

    Yazeed Alkhrijah1, Marwa Fahim2, Syed Muhammad Usman3, Qasim Mehmood3, Shehzad Khalid4,5,*, Mohamad A. Alawad1, Haya Aldossary6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2339-2355, 2025, DOI:10.32604/cmes.2025.071512 - 26 November 2025

    Abstract Atrial Fibrillation (AF) is a cardiac disorder characterized by irregular heart rhythms, typically diagnosed using Electrocardiogram (ECG) signals. In remote regions with limited healthcare personnel, automated AF detection is extremely important. Although recent studies have explored various machine learning and deep learning approaches, challenges such as signal noise and subtle variations between AF and other cardiac rhythms continue to hinder accurate classification. In this study, we propose a novel framework that integrates robust preprocessing, comprehensive feature extraction, and an ensemble classification strategy. In the first step, ECG signals are divided into equal-sized segments using a… More >

Displaying 1-10 on page 1 of 298. Per Page