Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (42)
  • Open Access

    ARTICLE

    Integrated Energy-Efficient Distributed Link Stability Algorithm for UAV Networks

    Altaf Hussain1, Shuaiyong Li2, Tariq Hussain3, Razaz Waheeb Attar4, Farman Ali5,*, Ahmed Alhomoud6, Babar Shah7

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2357-2394, 2024, DOI:10.32604/cmc.2024.056694 - 18 November 2024

    Abstract Ad hoc networks offer promising applications due to their ease of use, installation, and deployment, as they do not require a centralized control entity. In these networks, nodes function as senders, receivers, and routers. One such network is the Flying Ad hoc Network (FANET), where nodes operate in three dimensions (3D) using Unmanned Aerial Vehicles (UAVs) that are remotely controlled. With the integration of the Internet of Things (IoT), these nodes form an IoT-enabled network called the Internet of UAVs (IoU). However, the airborne nodes in FANET consume high energy due to their payloads and… More >

  • Open Access

    REVIEW

    Advancement in CFD and Responsive AI to Examine Cardiovascular Pulsatile Flow in Arteries: A Review

    Priyambada Praharaj1,*, Chandrakant R. Sonawane2,*, Arunkumar Bongale2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2021-2064, 2024, DOI:10.32604/cmes.2024.056289 - 31 October 2024

    Abstract This paper represents a detailed and systematic review of one of the most ongoing applications of computational fluid dynamics (CFD) in biomedical applications. Beyond its various engineering applications, CFD has started to establish a presence in the biomedical field. Cardiac abnormality, a familiar health issue, is an essential point of investigation by research analysts. Diagnostic modalities provide cardiovascular structural information but give insufficient information about the hemodynamics of blood. The study of hemodynamic parameters can be a potential measure for determining cardiovascular abnormalities. Numerous studies have explored the rheological behavior of blood experimentally and numerically.… More >

  • Open Access

    ARTICLE

    Influence of the Channel Design on the Heat Exchange Characteristics of Pulsating Flows in the Supply System of an Engine

    Leonid Plotnikov*, Danil Davydov, Dmitry Krasilnikov, Vladislav Shurupov

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1309-1322, 2024, DOI:10.32604/fhmt.2024.056680 - 30 October 2024

    Abstract Heat engines based on reciprocating machines remain in demand as energy converters in a variety of industries around the world. The aim of the study was to evaluate the gas-dynamic, consumable and heat exchange characteristics of non-stationary air flows in a supply system with transverse profiling of valve channels based on experimental studies. Valve channels with cross sections in the form of a circle, square and triangle were used to control the consumable and heat exchange characteristics of the flows in the supply system of the reciprocating-engine model. The article presents data on changes in… More >

  • Open Access

    ARTICLE

    Experimental Analyses of Flow Pattern and Heat Transfer in a Horizontally Oriented Polymer Pulsating Heat Pipe with Merged Liquid Slugs

    Zhengyuan Pei1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1381-1397, 2024, DOI:10.32604/fhmt.2024.056624 - 30 October 2024

    Abstract Extended experiments were conducted on the oscillation characteristics of merged liquid slugs in a horizontally oriented polymer pulsating heat pipe (PHP). The PHP’s serpentine channel comprised 14 parallel channels with a width of 1.3 and a height of 1.1 . The evaporator and condenser sections were 25 and 50 long, respectively, and the adiabatic section in between was 75 mm long. Using a plastic 3D printer and semi-transparent filament made from acrylonitrile butadiene styrene, the serpentine channel was printed directly onto a thin polycarbonate sheet to form the PHP. The PHP was charged with hydrofluoroether-7100.… More >

  • Open Access

    ARTICLE

    A Novel Integrated Photovoltaic System with a Three-Dimensional Pulsating Heat Pipe

    Mahyar Kargaran*, Hamid Reza Goshayeshi, Ali Reza Alizadeh Jajarm

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1461-1476, 2024, DOI:10.32604/fhmt.2024.056284 - 30 October 2024

    Abstract Solar energy is a valuable renewable energy source, and photovoltaic (PV) systems are a practical approach to harnessing this energy. Nevertheless, low energy efficiency is considered a major setback of the system. Moreover, high cell temperature and reflection of solar irradiance from the panel are considered chief culprits in this regard. Employing pulsating heat pipes (PHPs) is an innovative and useful approach to improving solar panel performance. This study presents the results of the power performance of a PV panel attached to a newly designed spiral pulsating heat pipe, while graphene oxide nanofluid with three More >

  • Open Access

    ARTICLE

    Flow Patterns and Heat Transfer Characteristics of a Polymer Pulsating Heat Pipe Filled with Hydrofluoroether

    Nobuhito Nagasato1, Zhengyuan Pei1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 49-63, 2024, DOI:10.32604/fhmt.2024.047502 - 21 March 2024

    Abstract Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe (PHP). Hydrofluoroether (HFE)-7100 was used as a working fluid, and its filling ratio was 50% of the entire PHP channel. A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer, and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera. The video images were then analyzed to obtain the flow patterns in the PHP. The heat transfer characteristics of the PHP were discussed based on the… More >

  • Open Access

    ARTICLE

    Experimental Evaluation of Individual Hotspots of a Multicore Microprocessor Using Pulsating Heat Sources

    Rodrigo Vidonscky Pinto1, Flávio Augusto Sanzovo Fiorelli2,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 427-443, 2023, DOI:10.32604/fhmt.2023.041917 - 30 November 2023

    Abstract The present work provides an experimental and numerical procedure to obtain the geometrical position of the hotspots of a microprocessor using the thermal images obtained from the transient thermal response of this processor subject to pulsating stress tests. This is performed by the solution of the steady inverse heat transfer problem using these thermal images, resulting in qualitative heat source distributions; these are analyzed using the mean heat source gradients to identify the elements that can be considered hotspots. This procedure identified that the processor INTEL Core 2 Quad Q8400S contains one hotspot located in More >

  • Open Access

    ARTICLE

    Modified Garden Balsan Optimization Based Machine Learning for Intrusion Detection

    Mesfer Al Duhayyim1,*, Jaber S. Alzahrani2, Hanan Abdullah Mengash3, Mrim M. Alnfiai4, Radwa Marzouk3, Gouse Pasha Mohammed5, Mohammed Rizwanullah5, Amgad Atta Abdelmageed5

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1471-1485, 2023, DOI:10.32604/csse.2023.034137 - 09 February 2023

    Abstract The Internet of Things (IoT) environment plays a crucial role in the design of smart environments. Security and privacy are the major challenging problems that exist in the design of IoT-enabled real-time environments. Security susceptibilities in IoT-based systems pose security threats which affect smart environment applications. Intrusion detection systems (IDS) can be used for IoT environments to mitigate IoT-related security attacks which use few security vulnerabilities. This paper introduces a modified garden balsan optimization-based machine learning model for intrusion detection (MGBO-MLID) in the IoT cloud environment. The presented MGBO-MLID technique focuses on the identification and… More >

  • Open Access

    ARTICLE

    A Novel Lightweight Image Encryption Scheme

    Rawia Abdulla Mohammed1,*, Maisa’a Abid Ali Khodher1, Ashwak Alabaichi2

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 2137-2153, 2023, DOI:10.32604/cmc.2023.036861 - 06 February 2023

    Abstract Encryption algorithms are one of the methods to protect data during its transmission through an unsafe transmission medium. But encryption methods need a lot of time during encryption and decryption, so it is necessary to find encryption algorithms that consume little time while preserving the security of the data. In this paper, more than one algorithm was combined to obtain high security with a short implementation time. A chaotic system, DNA computing, and Salsa20 were combined. A proposed 5D chaos system was used to generate more robust keys in a Salsa algorithm and DNA computing.… More >

  • Open Access

    ARTICLE

    Vibration and Sound Radiation of Cylindrical Shell Covered with a Skin Made of Micro Floating Raft Arrays Excited by Turbulence

    Dan Zhao1,*, Qiong Wu1, Minyao Gan2, Ke Li1, Wenhong Ma1, Qun Wu1, Liqiang Dong1, Shaogang Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 2041-2055, 2023, DOI:10.32604/cmes.2022.021026 - 20 September 2022

    Abstract To reduce the vibration and sound radiation of underwater cylindrical shells, a skin composed of micro floating raft arrays and a compliant wall is proposed in this paper. A vibroacoustic coupling model of a finite cylindrical shell covered with this skin for the case of turbulence excitation is established based on the shell theories of Donnell. The model is solved with the modal superposition method to investigate the effects of the structural parameters of micro floating raft elements on the performance of reducing vibration and sound radiation of the cylindrical shell of this skin. The… More >

Displaying 1-10 on page 1 of 42. Per Page