Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    A Q-Learning Improved Particle Swarm Optimization for Aircraft Pulsating Assembly Line Scheduling Problem Considering Skilled Operator Allocation

    Xiaoyu Wen1,2, Haohao Liu1,2, Xinyu Zhang1,2, Haoqi Wang1,2, Yuyan Zhang1,2, Guoyong Ye1,2, Hongwen Xing3, Siren Liu3, Hao Li1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-27, 2026, DOI:10.32604/cmc.2025.069492 - 10 November 2025

    Abstract Aircraft assembly is characterized by stringent precedence constraints, limited resource availability, spatial restrictions, and a high degree of manual intervention. These factors lead to considerable variability in operator workloads and significantly increase the complexity of scheduling. To address this challenge, this study investigates the Aircraft Pulsating Assembly Line Scheduling Problem (APALSP) under skilled operator allocation, with the objective of minimizing assembly completion time. A mathematical model considering skilled operator allocation is developed, and a Q-Learning improved Particle Swarm Optimization algorithm (QLPSO) is proposed. In the algorithm design, a reverse scheduling strategy is adopted to effectively… More >

  • Open Access

    ARTICLE

    Cavitation Performance Analysis of Tip Clearance in a Bulb-Type Hydro Turbine

    Feng Zhou1,2, Qifei Li1,*, Lu Xin1, Shiang Zhang3, Yang Liu1, Ming Guo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 411-429, 2025, DOI:10.32604/cmes.2025.069639 - 30 October 2025

    Abstract Bulb-type hydro turbines are commonly used in small- to medium-scale hydropower stations due to their compact design and adaptability to low-head conditions. However, long-term operation often results in wear at the runner rim, increasing tip clearance and triggering leakage flow and cavitation. These effects reduce hydraulic efficiency and accelerate blade surface erosion, posing serious risks to unit safety and operational stability. This study investigates the influence of tip clearance on cavitation performance in a 24 MW prototype bulb turbine. A three-dimensional numerical model is developed to simulate various operating conditions with different tip clearance values… More >

  • Open Access

    ARTICLE

    Innovative Dual Two-Phase Cooling System for Thermal Management of Electric Vehicle Batteries Using Dielectric Fluids and Pulsating Heat Pipes

    Federico Sacchelli1, Luca Cattani1,2, Matteo Malavasi1, Fabio Bozzoli1,2,*, Corrado Sciancalepore1

    Frontiers in Heat and Mass Transfer, Vol.23, No.5, pp. 1351-1364, 2025, DOI:10.32604/fhmt.2025.064154 - 31 October 2025

    Abstract This study investigates the feasibility of a novel dual two-phase cooling system for thermal management in lithium-ion batteries used in electric vehicles (EVs). The proposed system aims to combine low-boiling dielectric fluid immersion cooling and pulsating heat pipes (PHPs), in order to leverage the advantages of both technologies for efficient heat dissipation in a completely passive configuration. Experimental evaluations conducted under different discharge conditions demonstrate that the system effectively maintains battery temperatures within the optimal range of 20–40°C, with enhanced temperature uniformity and stability. While the PHP exhibited minimal impact at low power, its role More >

  • Open Access

    ARTICLE

    LSAP-IoHT: Lightweight Secure Authentication Protocol for the Internet of Healthcare Things

    Marwa Ahmim1, Nour Ouafi1, Insaf Ullah2,*, Ahmed Ahmim3, Djalel Chefrour3, Reham Almukhlifi4

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5093-5116, 2025, DOI:10.32604/cmc.2025.067641 - 23 October 2025

    Abstract The Internet of Healthcare Things (IoHT) marks a significant breakthrough in modern medicine by enabling a new era of healthcare services. IoHT supports real-time, continuous, and personalized monitoring of patients’ health conditions. However, the security of sensitive data exchanged within IoHT remains a major concern, as the widespread connectivity and wireless nature of these systems expose them to various vulnerabilities. Potential threats include unauthorized access, device compromise, data breaches, and data alteration, all of which may compromise the confidentiality and integrity of patient information. In this paper, we provide an in-depth security analysis of LAP-IoHT,… More >

  • Open Access

    ARTICLE

    In-Situ Study on the Effect of Gas Stove Structure on Flame Combustion Characteristics Based on Spectral Diagnosis

    Jin Feng1, Juntao Wei2,3,*, Yuanyuan Jing1, Xudong Song1,*, Zhengdong Gu3, Yonghui Bai1, Manoj Kumar Jena4,5, Weiguang Su1, Guangsuo Yu1,6

    Energy Engineering, Vol.122, No.7, pp. 2637-2652, 2025, DOI:10.32604/ee.2025.065407 - 27 June 2025

    Abstract This study systematically investigated the effects of different gas stove structures on flame combustion characteristics using spectral diagnostic techniques, aiming to provide optimized design guidelines for clean energy applications. To explore the combustion behaviors of various gas stove structures, UV cameras, high-speed cameras, and K-type thermocouples were employed to measure parameters such as flame OH radicals (OH*), flame morphology, pulsation frequency, flame temperature, and heat flux. The results demonstrate that flame stability was achieved at an inner/outer cover flow rate ratio of 0.5/4.0 L/min, beyond which further flow rate increases led to reduced combustion efficiency.… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Evacuated Tube Receiver at Various Flow Rates under Baghdad Climate with Nanofluid as Working Fluids

    Walaa M. Hashim, Israa S. Ahmed, Ayad K. Khlief*, Raed A. Jessam, Ameer Abed Jaddoa

    Energy Engineering, Vol.122, No.6, pp. 2485-2501, 2025, DOI:10.32604/ee.2025.061630 - 29 May 2025

    Abstract Achieving broadband solar thermal absorption via dilute nanofluids is still a daunting challenge since the absorption peaks of common metal particles are usually located in the visible part of the radiation spectrum. This paper aims to present the results of experimental investigations on the thermal performance of heat pipe-type evacuated solar collectors. The experimented system consists of 15 tubes, providing the hot nanofluid to 100-L storage in a closed flow loop. The solar collector with a gross area of 2.1 m2 is part of the solar hot water test system located in Baghdad-Iraq. Al2O3 nanofluid at… More >

  • Open Access

    ARTICLE

    Effect of Surface Wettability on the Flow and Heat Transfer Performance of Pulsating Heat Pipe

    Wei Zhang*, Haojie Chen, Kunyu Cheng, Yulong Zhang

    Frontiers in Heat and Mass Transfer, Vol.23, No.1, pp. 361-381, 2025, DOI:10.32604/fhmt.2025.059837 - 26 February 2025

    Abstract The present work deals with the numerical study of the two-phase flow pattern and heat transfer characteristics of single-loop pulsating heat pipes (PHPs) under three modified surfaces (superhydrophilic evaporation section paired with superhydrophilic, superhydrophobic, and hybrid condensation section). The Volume of Fluid (VOF) model was utilized to capture the phase-change process within the PHPs. The study also evaluated the influence of surface wettability on fluid patterns and thermo-dynamic heat transfer performance under various heat fluxes. The results indicated that the effective nucleation and detachment of droplets are critical factors influencing the thermal performance of the… More > Graphic Abstract

    Effect of Surface Wettability on the Flow and Heat Transfer Performance of Pulsating Heat Pipe

  • Open Access

    PROCEEDINGS

    Advanced Powder Fabrication Techniques for Laser Powder Bed Fusion

    Naoyuki Nomura1,*, Mingqi Dong1, Zhenxing Zhou1, Weiwei Zhou1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012381

    Abstract Laser powder bed fusion (L-PBF) exhibits many technological opportunities for producing high-performance metallic parts with tailored architectures. However, fabrication of suitable composite powders possessing good flowability, controllable particle size and distribution is a currently prerequisite and main challenge. In this work, two novel techniques, namely freeze-dry pulsated orifice ejection method (FD-POEM) [1] and ultrafine bubble (UFB)-assisted heteroagglomeration [2], have been developed to fabricate uniform composite powders. By taking MoSiBTiC alloy powders as an example, the working principle of FD-POEM process was firstly illustrated. The spherical FD-POEM particles were consisted of typical mesh structures induced by… More >

  • Open Access

    ARTICLE

    Integrated Energy-Efficient Distributed Link Stability Algorithm for UAV Networks

    Altaf Hussain1, Shuaiyong Li2, Tariq Hussain3, Razaz Waheeb Attar4, Farman Ali5,*, Ahmed Alhomoud6, Babar Shah7

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2357-2394, 2024, DOI:10.32604/cmc.2024.056694 - 18 November 2024

    Abstract Ad hoc networks offer promising applications due to their ease of use, installation, and deployment, as they do not require a centralized control entity. In these networks, nodes function as senders, receivers, and routers. One such network is the Flying Ad hoc Network (FANET), where nodes operate in three dimensions (3D) using Unmanned Aerial Vehicles (UAVs) that are remotely controlled. With the integration of the Internet of Things (IoT), these nodes form an IoT-enabled network called the Internet of UAVs (IoU). However, the airborne nodes in FANET consume high energy due to their payloads and… More >

  • Open Access

    REVIEW

    Advancement in CFD and Responsive AI to Examine Cardiovascular Pulsatile Flow in Arteries: A Review

    Priyambada Praharaj1,*, Chandrakant R. Sonawane2,*, Arunkumar Bongale2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2021-2064, 2024, DOI:10.32604/cmes.2024.056289 - 31 October 2024

    Abstract This paper represents a detailed and systematic review of one of the most ongoing applications of computational fluid dynamics (CFD) in biomedical applications. Beyond its various engineering applications, CFD has started to establish a presence in the biomedical field. Cardiac abnormality, a familiar health issue, is an essential point of investigation by research analysts. Diagnostic modalities provide cardiovascular structural information but give insufficient information about the hemodynamics of blood. The study of hemodynamic parameters can be a potential measure for determining cardiovascular abnormalities. Numerous studies have explored the rheological behavior of blood experimentally and numerically.… More >

Displaying 1-10 on page 1 of 51. Per Page