Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (66)
  • Open Access

    ARTICLE

    Robust Human Interaction Recognition Using Extended Kalman Filter

    Tanvir Fatima Naik Bukht1, Abdulwahab Alazeb2, Naif Al Mudawi2, Bayan Alabdullah3, Khaled Alnowaiser4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2987-3002, 2024, DOI:10.32604/cmc.2024.053547 - 18 November 2024

    Abstract In the field of computer vision and pattern recognition, knowledge based on images of human activity has gained popularity as a research topic. Activity recognition is the process of determining human behavior based on an image. We implemented an Extended Kalman filter to create an activity recognition system here. The proposed method applies an HSI color transformation in its initial stages to improve the clarity of the frame of the image. To minimize noise, we use Gaussian filters. Extraction of silhouette using the statistical method. We use Binary Robust Invariant Scalable Keypoints (BRISK) and SIFT More >

  • Open Access

    ARTICLE

    Unknown Environment Measurement Mapping by Unmanned Aerial Vehicle Using Kalman Filter-Based Low-Cost Estimated Parallel 8-Beam LIDAR

    Mohamed Rabik Mohamed Ismail1, Muthuramalingam Thangaraj1,*, Khaja Moiduddin2,*, Zeyad Almutairi2,3, Mustufa Haider Abidi2

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4263-4279, 2024, DOI:10.32604/cmc.2024.055271 - 12 September 2024

    Abstract The measurement and mapping of objects in the outer environment have traditionally been conducted using ground-based monitoring systems, as well as satellites. More recently, unmanned aerial vehicles have also been employed for this purpose. The accurate detection and mapping of a target such as buildings, trees, and terrains are of utmost importance in various applications of unmanned aerial vehicles (UAVs), including search and rescue operations, object transportation, object detection, inspection tasks, and mapping activities. However, the rapid measurement and mapping of the object are not currently achievable due to factors such as the object’s size,… More >

  • Open Access

    ARTICLE

    Semantic Segmentation and YOLO Detector over Aerial Vehicle Images

    Asifa Mehmood Qureshi1, Abdul Haleem Butt1, Abdulwahab Alazeb2, Naif Al Mudawi2, Mohammad Alonazi3, Nouf Abdullah Almujally4, Ahmad Jalal1, Hui Liu5,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3315-3332, 2024, DOI:10.32604/cmc.2024.052582 - 15 August 2024

    Abstract Intelligent vehicle tracking and detection are crucial tasks in the realm of highway management. However, vehicles come in a range of sizes, which is challenging to detect, affecting the traffic monitoring system’s overall accuracy. Deep learning is considered to be an efficient method for object detection in vision-based systems. In this paper, we proposed a vision-based vehicle detection and tracking system based on a You Look Only Once version 5 (YOLOv5) detector combined with a segmentation technique. The model consists of six steps. In the first step, all the extracted traffic sequence images are subjected… More >

  • Open Access

    ARTICLE

    Power Quality Disturbance Identification Basing on Adaptive Kalman Filter and Multi-Scale Channel Attention Fusion Convolutional Network

    Feng Zhao, Guangdi Liu*, Xiaoqiang Chen, Ying Wang

    Energy Engineering, Vol.121, No.7, pp. 1865-1882, 2024, DOI:10.32604/ee.2024.048209 - 11 June 2024

    Abstract In light of the prevailing issue that the existing convolutional neural network (CNN) power quality disturbance identification method can only extract single-scale features, which leads to a lack of feature information and weak anti-noise performance, a new approach for identifying power quality disturbances based on an adaptive Kalman filter (KF) and multi-scale channel attention (MS-CAM) fused convolutional neural network is suggested. Single and composite-disruption signals are generated through simulation. The adaptive maximum likelihood Kalman filter is employed for noise reduction in the initial disturbance signal, and subsequent integration of multi-scale features into the conventional CNN… More >

  • Open Access

    ARTICLE

    Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm

    Zhuo Chen1,*, Ningning Wang2, Wenbo Jin3, Dui Li1

    Energy Engineering, Vol.121, No.4, pp. 1007-1026, 2024, DOI:10.32604/ee.2023.045270 - 26 March 2024

    Abstract A hard problem that hinders the movement of waxy crude oil is wax deposition in oil pipelines. To ensure the safe operation of crude oil pipelines, an accurate model must be developed to predict the rate of wax deposition in crude oil pipelines. Aiming at the shortcomings of the ENN prediction model, which easily falls into the local minimum value and weak generalization ability in the implementation process, an optimized ENN prediction model based on the IRSA is proposed. The validity of the new model was confirmed by the accurate prediction of two sets of… More > Graphic Abstract

    Prediction Model of Wax Deposition Rate in Waxy Crude Oil Pipelines by Elman Neural Network Based on Improved Reptile Search Algorithm

  • Open Access

    ARTICLE

    Maximum Correntropy Criterion-Based UKF for Loosely Coupling INS and UWB in Indoor Localization

    Yan Wang*, You Lu, Yuqing Zhou, Zhijian Zhao

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2673-2703, 2024, DOI:10.32604/cmes.2023.046743 - 11 March 2024

    Abstract Indoor positioning is a key technology in today’s intelligent environments, and it plays a crucial role in many application areas. This paper proposed an unscented Kalman filter (UKF) based on the maximum correntropy criterion (MCC) instead of the minimum mean square error criterion (MMSE). This innovative approach is applied to the loose coupling of the Inertial Navigation System (INS) and Ultra-Wideband (UWB). By introducing the maximum correntropy criterion, the MCCUKF algorithm dynamically adjusts the covariance matrices of the system noise and the measurement noise, thus enhancing its adaptability to diverse environmental localization requirements. Particularly in… More >

  • Open Access

    ARTICLE

    A Novel Method for Aging Prediction of Railway Catenary Based on Improved Kalman Filter

    Jie Li1,3,*, Rongwen Wang2, Yongtao Hu1,3, Jinjun Li1

    Structural Durability & Health Monitoring, Vol.18, No.1, pp. 73-90, 2024, DOI:10.32604/sdhm.2023.044023 - 11 January 2024

    Abstract The aging prediction of railway catenary is of profound significance for ensuring the regular operation of electrified trains. However, in real-world scenarios, accurate predictions are challenging due to various interferences. This paper addresses this challenge by proposing a novel method for predicting the aging of railway catenary based on an improved Kalman filter (KF). The proposed method focuses on modifying the priori state estimate covariance and measurement error covariance of the KF to enhance accuracy in complex environments. By comparing the optimal displacement value with the theoretically calculated value based on the thermal expansion effect… More > Graphic Abstract

    A Novel Method for Aging Prediction of Railway Catenary Based on Improved Kalman Filter

  • Open Access

    ARTICLE

    Traffic Control Based on Integrated Kalman Filtering and Adaptive Quantized Q-Learning Framework for Internet of Vehicles

    Othman S. Al-Heety1,*, Zahriladha Zakaria1,*, Ahmed Abu-Khadrah2, Mahamod Ismail3, Sarmad Nozad Mahmood4, Mohammed Mudhafar Shakir5, Sameer Alani6, Hussein Alsariera1

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2103-2127, 2024, DOI:10.32604/cmes.2023.029509 - 15 December 2023

    Abstract Intelligent traffic control requires accurate estimation of the road states and incorporation of adaptive or dynamically adjusted intelligent algorithms for making the decision. In this article, these issues are handled by proposing a novel framework for traffic control using vehicular communications and Internet of Things data. The framework integrates Kalman filtering and Q-learning. Unlike smoothing Kalman filtering, our data fusion Kalman filter incorporates a process-aware model which makes it superior in terms of the prediction error. Unlike traditional Q-learning, our Q-learning algorithm enables adaptive state quantization by changing the threshold of separating low traffic from… More >

  • Open Access

    ARTICLE

    Notes on Convergence and Modeling for the Extended Kalman Filter

    Dah-Jing Jwo*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2137-2155, 2023, DOI:10.32604/cmc.2023.034308 - 29 November 2023

    Abstract The goal of this work is to provide an understanding of estimation technology for both linear and nonlinear dynamical systems. A critical analysis of both the Kalman filter (KF) and the extended Kalman filter (EKF) will be provided, along with examples to illustrate some important issues related to filtering convergence due to system modeling. A conceptual explanation of the topic with illustrative examples provided in the paper can help the readers capture the essential principles and avoid making mistakes while implementing the algorithms. Adding fictitious process noise to the system model assumed by the filter… More >

  • Open Access

    ARTICLE

    Kalman Filter-Based CNN-BiLSTM-ATT Model for Traffic Flow Prediction

    Hong Zhang1,2,*, Gang Yang1, Hailiang Yu1, Zan Zheng1

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 1047-1063, 2023, DOI:10.32604/cmc.2023.039274 - 08 June 2023

    Abstract To accurately predict traffic flow on the highways, this paper proposes a Convolutional Neural Network-Bi-directional Long Short-Term Memory-Attention Mechanism (CNN-BiLSTM-Attention) traffic flow prediction model based on Kalman-filtered data processing. Firstly, the original fluctuating data is processed by Kalman filtering, which can reduce the instability of short-term traffic flow prediction due to unexpected accidents. Then the local spatial features of the traffic data during different periods are extracted, dimensionality is reduced through a one-dimensional CNN, and the BiLSTM network is used to analyze the time series information. Finally, the Attention Mechanism assigns feature weights and performs… More >

Displaying 1-10 on page 1 of 66. Per Page