Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (61)
  • Open Access

    ARTICLE

    Explainable Ensemble Learning Framework for Early Detection of Autism Spectrum Disorder: Enhancing Trust, Interpretability and Reliability in AI-Driven Healthcare

    Menwa Alshammeri1,2,*, Noshina Tariq3, NZ Jhanji4,5, Mamoona Humayun6, Muhammad Attique Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074627 - 29 January 2026

    Abstract Artificial Intelligence (AI) is changing healthcare by helping with diagnosis. However, for doctors to trust AI tools, they need to be both accurate and easy to understand. In this study, we created a new machine learning system for the early detection of Autism Spectrum Disorder (ASD) in children. Our main goal was to build a model that is not only good at predicting ASD but also clear in its reasoning. For this, we combined several different models, including Random Forest, XGBoost, and Neural Networks, into a single, more powerful framework. We used two different types More >

  • Open Access

    ARTICLE

    Interpretable Federated Learning Model for Cyber Intrusion Detection in Smart Cities with Privacy-Preserving Feature Selection

    Muhammad Sajid Farooq1, Muhammad Saleem2, M.A. Khan3,4, Muhammad Farrukh Khan5, Shahan Yamin Siddiqui6, Muhammad Shoukat Aslam7, Khan M. Adnan8,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5183-5206, 2025, DOI:10.32604/cmc.2025.069641 - 23 October 2025

    Abstract The rapid evolution of smart cities through IoT, cloud computing, and connected infrastructures has significantly enhanced sectors such as transportation, healthcare, energy, and public safety, but also increased exposure to sophisticated cyber threats. The diversity of devices, high data volumes, and real-time operational demands complicate security, requiring not just robust intrusion detection but also effective feature selection for relevance and scalability. Traditional Machine Learning (ML) based Intrusion Detection System (IDS) improves detection but often lacks interpretability, limiting stakeholder trust and timely responses. Moreover, centralized feature selection in conventional IDS compromises data privacy and fails to… More >

  • Open Access

    ARTICLE

    Explainable Transformer-Based Approach for Dental Disease Prediction

    Sari Masri, Ahmad Hasasneh*

    Computer Systems Science and Engineering, Vol.49, pp. 481-497, 2025, DOI:10.32604/csse.2025.068616 - 10 October 2025

    Abstract Diagnosing dental disorders using routine photographs can significantly reduce chair-side workload and expand access to care. However, most AI-based image analysis systems suffer from limited interpretability and are trained on class-imbalanced datasets. In this study, we developed a balanced, transformer-based pipeline to detect three common dental disorders: tooth discoloration, calculus, and hypodontia, from standard color images. After applying a color-standardized preprocessing pipeline and performing stratified data splitting, the proposed vision transformer model was fine-tuned and subsequently evaluated using standard classification benchmarks. The model achieved an impressive accuracy of 98.94%, with precision, recall and F1 scores More >

  • Open Access

    ARTICLE

    A Novel Variable-Fidelity Kriging Surrogate Model Based on Global Optimization for Black-Box Problems

    Yi Guan1, Pengpeng Zhi2,3,*, Zhonglai Wang1,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3343-3368, 2025, DOI:10.32604/cmes.2025.069515 - 30 September 2025

    Abstract Variable-fidelity (VF) surrogate models have received increasing attention in engineering design optimization as they can approximate expensive high-fidelity (HF) simulations with reduced computational power. A key challenge to building a VF model is devising an adaptive model updating strategy that jointly selects additional low-fidelity (LF) and/or HF samples. The additional samples must enhance the model accuracy while maximizing the computational efficiency. We propose ISMA-VFEEI, a global optimization framework that integrates an Improved Slime-Mould Algorithm (ISMA) and a Variable-Fidelity Expected Extension Improvement (VFEEI) learning function to construct a VF surrogate model efficiently. First, A cost-aware VFEEI More >

  • Open Access

    ARTICLE

    Enhanced Wheat Disease Detection Using Deep Learning and Explainable AI Techniques

    Hussam Qushtom, Ahmad Hasasneh*, Sari Masri

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1379-1395, 2025, DOI:10.32604/cmc.2025.061995 - 09 June 2025

    Abstract This study presents an enhanced convolutional neural network (CNN) model integrated with Explainable Artificial Intelligence (XAI) techniques for accurate prediction and interpretation of wheat crop diseases. The aim is to streamline the detection process while offering transparent insights into the model’s decision-making to support effective disease management. To evaluate the model, a dataset was collected from wheat fields in Kotli, Azad Kashmir, Pakistan, and tested across multiple data splits. The proposed model demonstrates improved stability, faster convergence, and higher classification accuracy. The results show significant improvements in prediction accuracy and stability compared to prior works,… More >

  • Open Access

    COMMUNICATIONS

    Sustainable Circulating Energy System for Carbon Capture Usage and Storage (CCUS)

    Kenji Sorimachi1,2,*, Toshinori Tsukada3, Hossam A. Gabbar4

    Energy Engineering, Vol.122, No.6, pp. 2177-2185, 2025, DOI:10.32604/ee.2025.064975 - 29 May 2025

    Abstract Recently, we developed an innovative CO2 capture and storage method based on simple chemical reactions using NaOH and CaCl2. In this technology, it was newly found that the addition of CO2 gas produced CaCO3 (limestone) in the solution of NaOH and CaCl2 at less than 0.2 N NaOH, while at more than 0.2 N NaOH, Ca(OH)2 formation occurred merely without CO2. The present study has been designed to develop an integrated system in which the electrolysis unit is combined with the CO2 fixation unit. As the electrolysis of NaCl produces simultaneously not only electricity but also H2 and Cl2, the… More > Graphic Abstract

    Sustainable Circulating Energy System for Carbon Capture Usage and Storage (CCUS)

  • Open Access

    ARTICLE

    An AI-Enabled Framework for Transparency and Interpretability in Cardiovascular Disease Risk Prediction

    Isha Kiran1, Shahzad Ali2,3, Sajawal ur Rehman Khan4,5, Musaed Alhussein6, Sheraz Aslam7,8,*, Khursheed Aurangzeb6,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 5057-5078, 2025, DOI:10.32604/cmc.2025.058724 - 06 March 2025

    Abstract Cardiovascular disease (CVD) remains a leading global health challenge due to its high mortality rate and the complexity of early diagnosis, driven by risk factors such as hypertension, high cholesterol, and irregular pulse rates. Traditional diagnostic methods often struggle with the nuanced interplay of these risk factors, making early detection difficult. In this research, we propose a novel artificial intelligence-enabled (AI-enabled) framework for CVD risk prediction that integrates machine learning (ML) with eXplainable AI (XAI) to provide both high-accuracy predictions and transparent, interpretable insights. Compared to existing studies that typically focus on either optimizing ML… More >

  • Open Access

    PROCEEDINGS

    Reaction Characteristics of Low-Lime Calcium Silicate Cement Power in OPC Pastes

    Gwang Mok Kim1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012583

    Abstract This study summarized a part of the research conducted by Kim et al. [1]. The utilization of low-lime calcium silicate cement presents a promising avenue for reducing CO2 emissions in construction fields. Ordinary Portland cement pastes with the type of calcium silicate cement powder were fabricated and solidified under carbonation curing conditions. The physicochemical characteristics of the pastes were examined via variable tests including initial setting and flow characteristics, compressive strength and so on. Limestone and silica fume were employed for the synthesis of the calcium silicate cement used here. The content of calcium silicate More >

  • Open Access

    PROCEEDINGS

    Compression Behavior of FRP-Confined Seawater Sea-Sand Coral Aggregates Concrete (SSCAC)

    Mianheng Lai1, R. Q. Lu1, Fengming Ren1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.31, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012824

    Abstract Coral aggregates have become a promising alternative to natural coarse aggregates in the offshore construction projects. In this paper, seawater sea-sand coral aggregates concrete (SSCAC) with 4 basic materials: cement, seawater, sea-sands and coral aggregates was produced. By adding various minerals fly ash (FA) and limestone powder (LSP) to partially replace cement, the performance of SSCAC can be improved while reducing the carbon dioxide emission. Due to the higher chloride ion content of SSCAC, fiber-reinforced polymer (FRP) was used to confined SSCAC instead of the traditional steel to solve the corrosion problem. This paper conducted More >

  • Open Access

    ARTICLE

    Multiscale Feature Fusion for Gesture Recognition Using Commodity Millimeter-Wave Radar

    Lingsheng Li1, Weiqing Bai2, Chong Han2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1613-1640, 2024, DOI:10.32604/cmc.2024.056073 - 15 October 2024

    Abstract Gestures are one of the most natural and intuitive approach for human-computer interaction. Compared with traditional camera-based or wearable sensors-based solutions, gesture recognition using the millimeter wave radar has attracted growing attention for its characteristics of contact-free, privacy-preserving and less environment-dependence. Although there have been many recent studies on hand gesture recognition, the existing hand gesture recognition methods still have recognition accuracy and generalization ability shortcomings in short-range applications. In this paper, we present a hand gesture recognition method named multiscale feature fusion (MSFF) to accurately identify micro hand gestures. In MSFF, not only the More >

Displaying 1-10 on page 1 of 61. Per Page