Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (876)
  • Open Access

    ARTICLE

    Pervasive Attentive Neural Network for Intelligent Image Classification Based on N-CDE’s

    Anas W. Abulfaraj*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1137-1156, 2024, DOI:10.32604/cmc.2024.047945

    Abstract The utilization of visual attention enhances the performance of image classification tasks. Previous attention-based models have demonstrated notable performance, but many of these models exhibit reduced accuracy when confronted with inter-class and intra-class similarities and differences. Neural-Controlled Differential Equations (N-CDE’s) and Neural Ordinary Differential Equations (NODE’s) are extensively utilized within this context. N-CDE’s possesses the capacity to effectively illustrate both inter-class and intra-class similarities and differences with enhanced clarity. To this end, an attentive neural network has been proposed to generate attention maps, which uses two different types of N-CDE’s, one for adopting hidden layers and the other to generate… More >

  • Open Access

    ARTICLE

    A Coupled Thermomechanical Crack Propagation Behavior of Brittle Materials by Peridynamic Differential Operator

    Tianyi Li1,2, Xin Gu2, Qing Zhang2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 339-361, 2024, DOI:10.32604/cmes.2024.047566

    Abstract This study proposes a comprehensive, coupled thermomechanical model that replaces local spatial derivatives in classical differential thermomechanical equations with nonlocal integral forms derived from the peridynamic differential operator (PDDO), eliminating the need for calibration procedures. The model employs a multi-rate explicit time integration scheme to handle varying time scales in multi-physics systems. Through simulations conducted on granite and ceramic materials, this model demonstrates its effectiveness. It successfully simulates thermal damage behavior in granite arising from incompatible mineral expansion and accurately calculates thermal crack propagation in ceramic slabs during quenching. To account for material heterogeneity, the model utilizes the Shuffle algorithm… More >

  • Open Access

    ARTICLE

    Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites

    Chengkan Xu1,2,4, Xiaofei Wang3, Yixuan Li2, Guannan Wang2,*, He Zhang2,4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 957-974, 2024, DOI:10.32604/cmes.2024.047327

    Abstract Structural damage in heterogeneous materials typically originates from microstructures where stress concentration occurs. Therefore, evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial. Repeating unit cells (RUCs) are commonly used to represent microstructural details and homogenize the effective response of composites. This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs. The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters, including volume fraction, fiber/matrix property ratio, fiber shapes, and loading direction. Subsequently, the conditional generative adversarial network… More > Graphic Abstract

    Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites

  • Open Access

    ARTICLE

    Comparative Analysis of Reaction to Fire and Flammability of Hemp Shives Insulation Boards with Incorporated Microencapsulated Phase Change Materials

    Inga Zotova1,*, Edgars Kirilovs1, Laura Ziemele2

    Journal of Renewable Materials, Vol.12, No.3, pp. 603-613, 2024, DOI:10.32604/jrm.2024.047607

    Abstract Nowadays buildings contain innovative materials, materials from local resources, production surpluses and rapidly renewable natural resources. Phase Change Materials (PCM) are one such group of novel materials which reduce building energy consumption. With the wider availability of microencapsulated PCM, there is an opportunity to develop a new type of insulating materials, combinate PCM with traditional insulation materials for latent heat energy storage. These materials are typically flammable and are located on the interior wall finishing yet there has been no detailed assessment of their fire performance. In this research work prototypes of low-density insulating boards for indoor spaces from hemp… More > Graphic Abstract

    Comparative Analysis of Reaction to Fire and Flammability of Hemp Shives Insulation Boards with Incorporated Microencapsulated Phase Change Materials

  • Open Access

    ARTICLE

    A Rapid Parameter of Enzyme-Treated Cellulosic Material Revealed by Reducing Sugar Release

    Verônica Távilla Ferreira Silva, Adriane Maria Ferreira Milagres*

    Journal of Renewable Materials, Vol.12, No.3, pp. 539-551, 2024, DOI:10.32604/jrm.2023.045726

    Abstract This study was conducted to evaluate the effectiveness of enzymes in purifying and reducing the degree of polymerization of cellulose for the production of dissolving pulp. Our goal was to determine the contributions of xylanase (X) and endoglucanase (EG) in the treatment of pulp, specifically by quantifying the formation of soluble and insoluble reducing sugars using the dinitrosalycilic acid (DNS) test. Predominantly, the release of soluble reducing sugars (RSSol) was enhanced after xylanase treatment, while endoglucanase (EG) treatment led to changes in insoluble reducing sugars (RSIns). The maximum synergism was observed for RSIns when a high ratio of endoglucanase to… More > Graphic Abstract

    A Rapid Parameter of Enzyme-Treated Cellulosic Material Revealed by Reducing Sugar Release

  • Open Access

    ARTICLE

    Dynamiques Spatio-Temporelles de l’Occupation des Terres dans les Zones de Production Cotonnière et Céréalière au Mali

    Moumouni Sidibé1,2,*, Augustin K. N. Aoudji1, Yaya Issifou Moumouni3,*, Issa Sacko4, Idelphonse Saliou1, Bourema Koné2, Achille Ephrem Assogbadjo5, Afio Zannou1

    Revue Internationale de Géomatique, Vol.33, pp. 51-76, 2024, DOI:10.32604/rig.2024.045505

    Abstract La dynamique d’occupation des terres constitue un préalable pour l’identification des contraintes de gestion des ressources naturelles, l’évolution de pratiques agraires et la croissance démographique. L’objectif de cette recherche est d’améliorer les connaissances sur la dynamique d’occupation des terres agricoles dans les zones de cultures sèches (Cinzana) et cotonnière (Kléla) au Mali. La méthodologie utilisée a consisté à la collecte des données planimétriques et à l’analyse diachronique à travers des images satellitaires Landsat TM (Thematic Mapper) de 2000 et OLI (Operational Land Image) de 2020. Les taux de dégradation et de déforestation des formations naturelles ont été calculés d’une part… More > Graphic Abstract

    Dynamiques Spatio-Temporelles de l’Occupation des Terres dans les Zones de Production Cotonnière et Céréalière au Mali

  • Open Access

    ARTICLE

    Influence of Poly (vinyl butyral) Modification on the Mechanical and Thermal Properties of Kevlar Fiber Reinforced Novolac epoxy/multiwalled carbon nanotube nanocomposites

    KAVITA*, R.K. TIWARI

    Journal of Polymer Materials, Vol.36, No.2, pp. 195-205, 2019, DOI:10.32381/JPM.2019.36.02.7

    Abstract The effect of poly (vinyl butyral) and acid functionalized multiwalled carbon nanotubes (f-MWCNT) on the thermal and mechanical performance of Kevlar fiber reinforced novolac epoxy nanocomposites was investigated and presented in this paper. Nanocomposite containing 1.5 wt. % poly (vinyl butyral) and 0.5 wt. % f-MWCNT exhibited best thermal and mechanical properties (except flexural strength) among all the nanocomposites reported here. It showed ~5%, 27% and 126 % improvement in tensile strength, young’s modulus and impact strength respectively as compared to the neat novolac epoxy Kevlar composite.Nanocomposite containing 0.5 wt. % f- MWCNT and 2 wt. % poly (vinyl butyral)… More >

  • Open Access

    ARTICLE

    Performance Enhancement of Bio-fouling Resistant Cellulose triacetate-based Osmosis Membranes using Functionalized Multiwalled Carbon Nanotube & Graphene Oxide

    A.K. GHOSH1, RUTUJA S. BHOJE2, R.C. BINDAL1

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 109-120, 2020, DOI:10.32381/JPM.2020.37.1-2.8

    Abstract In this study, cellulose triacetate (CTA) based nanocomposite membranes were developed by incorporation of carboxylic acid functionalized multiwalled carbon-nanotube (cMWCNT) and graphene oxide (GO) which have enhancement of both flux and fouling resistance properties of the membranes. Membranes were casted at room temperature and annealed at 90o C hot water for 10 minutes. The incorporation level of both the nanomaterials is 1.5% of the CTA polymer weight in the nanocomposite membranes. Prepared membranes were characterized in terms of water contact angle, surface morphology and mechanical strength. The performance of the membranes was evaluated both in reverse osmosis (RO) and forward… More >

  • Open Access

    ARTICLE

    Swelling dynamics of Poly (N, N- Dimethylacrylamide - co- Crotonic acid) Hydrogel and Evaluation of its Potential for Controlled Release of Fertilizers

    FATMA LOUZRI, SADJIA BENNOUR

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 55-76, 2020, DOI:10.32381/JPM.2020.37.1-2.5

    Abstract Poly(N,N-dimethymethylacrylamide -co-crotonic acid) (P(DMA-CAx)) hydrogels were prepared by free radical polymerization, using N,N- methylenebisacrylamide (NMBA) as cross-linking agent. The synthesized hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The effects of comonomer composition and pH of the medium on the swelling behavior of hydrogels were investigated. The obtained results showed that the swelling capabilities of hydrogels increased as crotonic acid content and pH increased. In order to evaluate the controlled release potential of the polymeric matrix, it was loaded with potassium nitrate and ammonium nitrate as fertilizers and the release kinetics was studied as a… More >

  • Open Access

    ARTICLE

    Experimental Novel Investigation of Electrostatic Charged Multi Walled Carbon Nanotubes Reinforced Epoxy Based Polymer Composite

    R. SARAVANAN*, A. SURESHBABU

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 43-54, 2020, DOI:10.32381/JPM.2020.37.1-2.4

    Abstract In this research work, multi walled carbon nanotubes (MWCNT) particulate filler of various (0.9, 1.2, 1.5, & 1.8 wt %) weight percentage was used along with epoxy resin. A novel method of distributing the MWCNT in epoxy had been employed to reduce the agglomeration problem by charging the MWCNT electrostatically. The electrostatic charged (MWCNT) and uncharged (MWCNT) were loaded on to matrix and then it was stirred by a mechanical mixer for 300 minutes continuously to achieve uniform distribution. The nano filler reinforced composite was fabricated by using hand layup method and mechanical testing (Tensile and Flexural) were performed as… More >

Displaying 1-10 on page 1 of 876. Per Page