Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Towards Securing Machine Learning Models Against Membership Inference Attacks

    Sana Ben Hamida1,2, Hichem Mrabet3,4, Sana Belguith5,*, Adeeb Alhomoud6, Abderrazak Jemai7

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4897-4919, 2022, DOI:10.32604/cmc.2022.019709 - 11 October 2021

    Abstract From fraud detection to speech recognition, including price prediction, Machine Learning (ML) applications are manifold and can significantly improve different areas. Nevertheless, machine learning models are vulnerable and are exposed to different security and privacy attacks. Hence, these issues should be addressed while using ML models to preserve the security and privacy of the data used. There is a need to secure ML models, especially in the training phase to preserve the privacy of the training datasets and to minimise the information leakage. In this paper, we present an overview of ML threats and vulnerabilities,… More >

  • Open Access

    ARTICLE

    Generating Cartoon Images from Face Photos with Cycle-Consistent Adversarial Networks

    Tao Zhang1,2, Zhanjie Zhang1,2,*, Wenjing Jia3, Xiangjian He3, Jie Yang4

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2733-2747, 2021, DOI:10.32604/cmc.2021.019305 - 21 July 2021

    Abstract The generative adversarial network (GAN) is first proposed in 2014, and this kind of network model is machine learning systems that can learn to measure a given distribution of data, one of the most important applications is style transfer. Style transfer is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image. CYCLE-GAN is a classic GAN model, which has a wide range of scenarios in style transfer. Considering its unsupervised learning characteristics, the mapping is easy to be learned between an… More >

  • Open Access

    ARTICLE

    An Optimized Deep Residual Network with a Depth Concatenated Block for Handwritten Characters Classification

    Gibrael Abosamra*, Hadi Oqaibi

    CMC-Computers, Materials & Continua, Vol.68, No.1, pp. 1-28, 2021, DOI:10.32604/cmc.2021.015318 - 22 March 2021

    Abstract Even though much advancements have been achieved with regards to the recognition of handwritten characters, researchers still face difficulties with the handwritten character recognition problem, especially with the advent of new datasets like the Extended Modified National Institute of Standards and Technology dataset (EMNIST). The EMNIST dataset represents a challenge for both machine-learning and deep-learning techniques due to inter-class similarity and intra-class variability. Inter-class similarity exists because of the similarity between the shapes of certain characters in the dataset. The presence of intra-class variability is mainly due to different shapes written by different writers for… More >

Displaying 1-10 on page 1 of 3. Per Page