Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Information Extraction Based on Multi-turn Question Answering for Analyzing Korean Research Trends

    Seongung Jo1, Heung-Seon Oh1,*, Sanghun Im1, Gibaeg Kim1, Seonho Kim2

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2967-2980, 2023, DOI:10.32604/cmc.2023.031983 - 31 October 2022

    Abstract Analyzing Research and Development (R&D) trends is important because it can influence future decisions regarding R&D direction. In typical trend analysis, topic or technology taxonomies are employed to compute the popularities of the topics or codes over time. Although it is simple and effective, the taxonomies are difficult to manage because new technologies are introduced rapidly. Therefore, recent studies exploit deep learning to extract pre-defined targets such as problems and solutions. Based on the recent advances in question answering (QA) using deep learning, we adopt a multi-turn QA model to extract problems and solutions from… More >

Displaying 1-10 on page 1 of 1. Per Page