Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Knowledge Graph Representation Learning Based on Automatic Network Search for Link Prediction

    Zefeng Gu, Hua Chen*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.3, pp. 2497-2514, 2023, DOI:10.32604/cmes.2023.024332 - 23 November 2022

    Abstract Link prediction, also known as Knowledge Graph Completion (KGC), is the common task in Knowledge Graphs (KGs) to predict missing connections between entities. Most existing methods focus on designing shallow, scalable models, which have less expressive than deep, multi-layer models. Furthermore, most operations like addition, matrix multiplications or factorization are handcrafted based on a few known relation patterns in several well-known datasets, such as FB15k, WN18, etc. However, due to the diversity and complex nature of real-world data distribution, it is inherently difficult to preset all latent patterns. To address this issue, we propose KGE-ANS, More >

  • Open Access

    ARTICLE

    Future Event Prediction Based on Temporal Knowledge Graph Embedding

    Zhipeng Li1,2, Shanshan Feng3,*, Jun Shi2, Yang Zhou2, Yong Liao1,2, Yangzhao Yang2, Yangyang Li4, Nenghai Yu1, Xun Shao5

    Computer Systems Science and Engineering, Vol.44, No.3, pp. 2411-2423, 2023, DOI:10.32604/csse.2023.026823 - 01 August 2022

    Abstract Accurate prediction of future events brings great benefits and reduces losses for society in many domains, such as civil unrest, pandemics, and crimes. Knowledge graph is a general language for describing and modeling complex systems. Different types of events continually occur, which are often related to historical and concurrent events. In this paper, we formalize the future event prediction as a temporal knowledge graph reasoning problem. Most existing studies either conduct reasoning on static knowledge graphs or assume knowledges graphs of all timestamps are available during the training process. As a result, they cannot effectively… More >

Displaying 1-10 on page 1 of 2. Per Page