Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (46)
  • Open Access

    ARTICLE

    GATiT: An Intelligent Diagnosis Model Based on Graph Attention Network Incorporating Text Representation in Knowledge Reasoning

    Yu Song, Pengcheng Wu, Dongming Dai, Mingyu Gui, Kunli Zhang*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4767-4790, 2024, DOI:10.32604/cmc.2024.053506 - 12 September 2024

    Abstract The growing prevalence of knowledge reasoning using knowledge graphs (KGs) has substantially improved the accuracy and efficiency of intelligent medical diagnosis. However, current models primarily integrate electronic medical records (EMRs) and KGs into the knowledge reasoning process, ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text. To better integrate EMR text information, we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning (GATiT), which comprises text representation, subgraph construction, knowledge reasoning, and diagnostic classification. In the… More >

  • Open Access

    ARTICLE

    KGTLIR: An Air Target Intention Recognition Model Based on Knowledge Graph and Deep Learning

    Bo Cao1,*, Qinghua Xing2, Longyue Li2, Huaixi Xing1, Zhanfu Song1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1251-1275, 2024, DOI:10.32604/cmc.2024.052842 - 18 July 2024

    Abstract As a core part of battlefield situational awareness, air target intention recognition plays an important role in modern air operations. Aiming at the problems of insufficient feature extraction and misclassification in intention recognition, this paper designs an air target intention recognition method (KGTLIR) based on Knowledge Graph and Deep Learning. Firstly, the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism. Meanwhile, the accuracy, recall, and F1-score after iteration are introduced More >

  • Open Access

    ARTICLE

    Knowledge Reasoning Method Based on Deep Transfer Reinforcement Learning: DTRLpath

    Shiming Lin1,2,3, Ling Ye2, Yijie Zhuang1, Lingyun Lu2,*, Shaoqiu Zheng2,*, Chenxi Huang1, Ng Yin Kwee4

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 299-317, 2024, DOI:10.32604/cmc.2024.051379 - 18 July 2024

    Abstract In recent years, with the continuous development of deep learning and knowledge graph reasoning methods, more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning. By searching paths on the knowledge graph and making fact and link predictions based on these paths, deep learning-based Reinforcement Learning (RL) agents can demonstrate good performance and interpretability. Therefore, deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic. However, even in a small and fixed knowledge graph reasoning action… More >

  • Open Access

    ARTICLE

    LKPNR: Large Language Models and Knowledge Graph for Personalized News Recommendation Framework

    Hao Chen#, Runfeng Xie#, Xiangyang Cui, Zhou Yan, Xin Wang, Zhanwei Xuan*, Kai Zhang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4283-4296, 2024, DOI:10.32604/cmc.2024.049129 - 20 June 2024

    Abstract Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems. Traditional methods are usually difficult to learn and acquire complex semantic information in news texts, resulting in unsatisfactory recommendation results. Besides, these traditional methods are more friendly to active users with rich historical behaviors. However, they can not effectively solve the long tail problem of inactive users. To address these issues, this research presents a novel general framework that combines Large Language Models (LLM) and Knowledge Graphs (KG) into traditional methods. To learn the contextual information of news text, we… More >

  • Open Access

    REVIEW

    Research Progress on Economic Forest Water Stress Based on Bibliometrics and Knowledge Graph

    Xin Yin1,#, Shuai Wang1,#, Chunguang Wang1, Haichao Wang2, Zheying Zong1,3,*, Zeyu Ban1

    Phyton-International Journal of Experimental Botany, Vol.93, No.5, pp. 843-858, 2024, DOI:10.32604/phyton.2024.049114 - 28 May 2024

    Abstract This study employed the bibliometric software CiteSpace 6.1.R6 to analyze the correlation between thermal infrared, spectral remote sensing technology, and the estimation of economic forest water stress. It aimed to review the development and current status of this field, as well as to identify future research trends. A search was conducted on the China National Knowledge Infrastructure (CNKI) database using the keyword “water stress” for relevant studies from 2003 to 2023. The visual analysis function of CNKI was used to generate the distribution of annual publication volume, and CiteSpace 6.1.R6 was utilized to create network More >

  • Open Access

    REVIEW

    Survey and Prospect for Applying Knowledge Graph in Enterprise Risk Management

    Pengjun Li1, Qixin Zhao1, Yingmin Liu1, Chao Zhong1, Jinlong Wang1,*, Zhihan Lyu2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3825-3865, 2024, DOI:10.32604/cmc.2024.046851 - 26 March 2024

    Abstract Enterprise risk management holds significant importance in fostering sustainable growth of businesses and in serving as a critical element for regulatory bodies to uphold market order. Amidst the challenges posed by intricate and unpredictable risk factors, knowledge graph technology is effectively driving risk management, leveraging its ability to associate and infer knowledge from diverse sources. This review aims to comprehensively summarize the construction techniques of enterprise risk knowledge graphs and their prominent applications across various business scenarios. Firstly, employing bibliometric methods, the aim is to uncover the developmental trends and current research hotspots within the… More >

  • Open Access

    ARTICLE

    Recommendation Method for Contrastive Enhancement of Neighborhood Information

    Hairong Wang, Beijing Zhou*, Lisi Zhang, He Ma

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 453-472, 2024, DOI:10.32604/cmc.2023.046560 - 30 January 2024

    Abstract Knowledge graph can assist in improving recommendation performance and is widely applied in various personalized recommendation domains. However, existing knowledge-aware recommendation methods face challenges such as weak user-item interaction supervisory signals and noise in the knowledge graph. To tackle these issues, this paper proposes a neighbor information contrast-enhanced recommendation method by adding subtle noise to construct contrast views and employing contrastive learning to strengthen supervisory signals and reduce knowledge noise. Specifically, first, this paper adopts heterogeneous propagation and knowledge-aware attention networks to obtain multi-order neighbor embedding of users and items, mining the high-order neighbor information… More >

  • Open Access

    ARTICLE

    Network Configuration Entity Extraction Method Based on Transformer with Multi-Head Attention Mechanism

    Yang Yang1, Zhenying Qu1, Zefan Yan1, Zhipeng Gao1,*, Ti Wang2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 735-757, 2024, DOI:10.32604/cmc.2023.045807 - 30 January 2024

    Abstract Nowadays, ensuring the quality of network services has become increasingly vital. Experts are turning to knowledge graph technology, with a significant emphasis on entity extraction in the identification of device configurations. This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms. Initially, an improved active learning approach is employed to select the most valuable unlabeled samples, which are subsequently submitted for expert labeling. This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set. Then the labeled samples are… More >

  • Open Access

    REVIEW

    A Survey of Knowledge Graph Construction Using Machine Learning

    Zhigang Zhao1, Xiong Luo1,2,3,*, Maojian Chen1,2,3, Ling Ma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 225-257, 2024, DOI:10.32604/cmes.2023.031513 - 30 December 2023

    Abstract Knowledge graph (KG) serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework. This framework facilitates a transformation in information retrieval, transitioning it from mere string matching to far more sophisticated entity matching. In this transformative process, the advancement of artificial intelligence and intelligent information services is invigorated. Meanwhile, the role of machine learning method in the construction of KG is important, and these techniques have already achieved initial success. This article embarks on a comprehensive journey through the last strides in the field of KG via machine More >

  • Open Access

    ARTICLE

    Combining Deep Learning with Knowledge Graph for Design Knowledge Acquisition in Conceptual Product Design

    Yuexin Huang1,2, Suihuai Yu1, Jianjie Chu1,*, Zhaojing Su1,3, Yangfan Cong1, Hanyu Wang1, Hao Fan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 167-200, 2024, DOI:10.32604/cmes.2023.028268 - 22 September 2023

    Abstract The acquisition of valuable design knowledge from massive fragmentary data is challenging for designers in conceptual product design. This study proposes a novel method for acquiring design knowledge by combining deep learning with knowledge graph. Specifically, the design knowledge acquisition method utilises the knowledge extraction model to extract design-related entities and relations from fragmentary data, and further constructs the knowledge graph to support design knowledge acquisition for conceptual product design. Moreover, the knowledge extraction model introduces ALBERT to solve memory limitation and communication overhead in the entity extraction module, and uses multi-granularity information to overcome More >

Displaying 1-10 on page 1 of 46. Per Page