Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (12)
  • Open Access

    ARTICLE

    Diosgenin inhibited podocyte pyroptosis in diabetic kidney disease by regulating the Nrf2/NLRP3 pathway

    YU TANG1, WENXIAO HU2,*, YAJUN PENG1, XIANGDONG LING2

    BIOCELL, Vol.48, No.10, pp. 1503-1516, 2024, DOI:10.32604/biocell.2024.052692 - 02 October 2024

    Abstract Background: Podocyte injury is crucial in diabetic kidney disease (DKD) progression, and the mechanism remains unclear. The previous studies indicated Diosgenin played a key role in inhibiting podocyte injury progression. However, more research is needed to explore Diosgenin in inhibiting-molecular mechanisms in the process of podocyte injury. Methods: The content of Diosgenin in HeShenwan was detected by High-Performance Liquid Chromatography-mass spectrometry (HPLC-MS) method. The podocyte injury model was constructed by high glucose (HG)-induced mpc5 cells. The Cell Counting Kit-8 (CCK-8) assay was utilized to evaluate the activity of mpc5 cells. Pyroptosis in mpc5 cells was… More > Graphic Abstract

    Diosgenin inhibited podocyte pyroptosis in diabetic kidney disease by regulating the Nrf2/NLRP3 pathway

  • Open Access

    CORRECTION

    Correction: Applying Customized Convolutional Neural Network to Kidney Image Volumes for Kidney Disease Detection

    Ali Altalbe1,2,*, Abdul Rehman Javed3

    Computer Systems Science and Engineering, Vol.48, No.4, pp. 1075-1081, 2024, DOI:10.32604/csse.2024.054179 - 17 July 2024

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868 - 11 March 2024

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) More >

  • Open Access

    ARTICLE

    Applying Customized Convolutional Neural Network to Kidney Image Volumes for Kidney Disease Detection

    Ali Altalbe1,2,*, Abdul Rehman Javed3

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 2119-2134, 2023, DOI:10.32604/csse.2023.040620 - 28 July 2023

    Abstract Kidney infection is a severe medical issue affecting individuals worldwide and increasing mortality rates. Chronic Kidney Disease (CKD) is treatable during its initial phases but can become irreversible and cause renal failure. Among the various diseases, the most prevalent kidney conditions affecting kidney function are cyst growth, kidney tumors, and nephrolithiasis. The significant challenge for the medical community is the immediate diagnosis and treatment of kidney disease. Kidney failure could result from kidney disorders like tumors, stones, and cysts if not often identified and addressed. Computer-assisted diagnostics are necessary to support clinicians’ and specialists’ medical… More >

  • Open Access

    REVIEW

    Anti-fibrotic and anti-inflammatory effect of mesenchymal stromal cell-derived extracellular vesicles in chronic kidney disease

    GIULIA CHIABOTTO1,*, STEFANIA BRUNO2,*

    BIOCELL, Vol.47, No.7, pp. 1499-1508, 2023, DOI:10.32604/biocell.2023.028121 - 21 June 2023

    Abstract Renal fibrosis and inflammation are common pathological features of chronic kidney disease (CKD). Since currently available treatments can only delay the progression of CKD, the outcome of patients with CKD is still poor. One therapeutic option for the prevention of CKD-related complications could be the use of mesenchymal stromal cells (MSCs), which have shown beneficial effects in tissue fibrosis and regeneration after damage. However, safety issues, such as cellular rejection and carcinogenicity, limit their clinical application. Among the bioactive factors secreted by MSCs, extracellular vesicles (EVs) have shown the same beneficial effect of MSCs, without More > Graphic Abstract

    Anti-fibrotic and anti-inflammatory effect of mesenchymal stromal cell-derived extracellular vesicles in chronic kidney disease

  • Open Access

    ARTICLE

    Secured Framework for Assessment of Chronic Kidney Disease in Diabetic Patients

    Sultan Mesfer Aldossary*

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3387-3404, 2023, DOI:10.32604/iasc.2023.035249 - 15 March 2023

    Abstract With the emergence of cloud technologies, the services of healthcare systems have grown. Simultaneously, machine learning systems have become important tools for developing matured and decision-making computer applications. Both cloud computing and machine learning technologies have contributed significantly to the success of healthcare services. However, in some areas, these technologies are needed to provide and decide the next course of action for patients suffering from diabetic kidney disease (DKD) while ensuring privacy preservation of the medical data. To address the cloud data privacy problem, we proposed a DKD prediction module in a framework using cloud… More >

  • Open Access

    ARTICLE

    Ensemble Nonlinear Support Vector Machine Approach for Predicting Chronic Kidney Diseases

    S. Prakash1,*, P. Vishnu Raja2, A. Baseera3, D. Mansoor Hussain4, V. R. Balaji5, K. Venkatachalam6

    Computer Systems Science and Engineering, Vol.42, No.3, pp. 1273-1287, 2022, DOI:10.32604/csse.2022.021784 - 08 February 2022

    Abstract Urban living in large modern cities exerts considerable adverse effects on health and thus increases the risk of contracting several chronic kidney diseases (CKD). The prediction of CKDs has become a major task in urbanized countries. The primary objective of this work is to introduce and develop predictive analytics for predicting CKDs. However, prediction of huge samples is becoming increasingly difficult. Meanwhile, MapReduce provides a feasible framework for programming predictive algorithms with map and reduce functions. The relatively simple programming interface helps solve problems in the scalability and efficiency of predictive learning algorithms. In the… More >

  • Open Access

    ARTICLE

    Optimized Tuned Deep Learning Model for Chronic Kidney Disease Classification

    R. H. Aswathy1,*, P. Suresh1, Mohamed Yacin Sikkandar2, S. Abdel-Khalek3, Hesham Alhumyani4, Rashid A. Saeed4, Romany F. Mansour5

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2097-2111, 2022, DOI:10.32604/cmc.2022.019790 - 27 September 2021

    Abstract In recent times, Internet of Things (IoT) and Cloud Computing (CC) paradigms are commonly employed in different healthcare applications. IoT gadgets generate huge volumes of patient data in healthcare domain, which can be examined on cloud over the available storage and computation resources in mobile gadgets. Chronic Kidney Disease (CKD) is one of the deadliest diseases that has high mortality rate across the globe. The current research work presents a novel IoT and cloud-based CKD diagnosis model called Flower Pollination Algorithm (FPA)-based Deep Neural Network (DNN) model abbreviated as FPA-DNN. The steps involved in the… More >

  • Open Access

    ARTICLE

    Selecting Dominant Features for the Prediction of Early-Stage Chronic Kidney Disease

    Vinothini Arumugam*, S. Baghavathi Priya

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 947-959, 2022, DOI:10.32604/iasc.2022.018654 - 22 September 2021

    Abstract Nowadays, Chronic Kidney Disease (CKD) is one of the vigorous public health diseases. Hence, early detection of the disease may reduce the severity of its consequences. Besides, medical databases of any disease diagnosis may be collected from the blood test, urine test, and patient history. Nevertheless, medical information retrieved from various sources is diverse. Therefore, it is unadaptable to evaluate numerical and nominal features using the same feature selection algorithm, which may lead to fallacious analysis. Applying machine learning techniques over the medical database is a common way to help feature identification for CKD prediction.… More >

  • Open Access

    ARTICLE

    Simulation, Modeling, and Optimization of Intelligent Kidney Disease Predication Empowered with Computational Intelligence Approaches

    Abdul Hannan Khan1,2, Muhammad Adnan Khan3,*, Sagheer Abbas2, Shahan Yamin Siddiqui1,2, Muhammad Aanwar Saeed4, Majed Alfayad5, Nouh Sabri Elmitwally6,7

    CMC-Computers, Materials & Continua, Vol.67, No.2, pp. 1399-1412, 2021, DOI:10.32604/cmc.2021.012737 - 05 February 2021

    Abstract Artificial intelligence (AI) is expanding its roots in medical diagnostics. Various acute and chronic diseases can be identified accurately at the initial level by using AI methods to prevent the progression of health complications. Kidney diseases are producing a high impact on global health and medical practitioners are suggested that the diagnosis at earlier stages is one of the foremost approaches to avert chronic kidney disease and renal failure. High blood pressure, diabetes mellitus, and glomerulonephritis are the root causes of kidney disease. Therefore, the present study is proposed a set of multiple techniques such… More >

Displaying 1-10 on page 1 of 12. Per Page