Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    A Feature Selection Method Based on Hybrid Dung Beetle Optimization Algorithm and Slap Swarm Algorithm

    Wei Liu*, Tengteng Ren

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2979-3000, 2024, DOI:10.32604/cmc.2024.053627 - 15 August 2024

    Abstract Feature Selection (FS) is a key pre-processing step in pattern recognition and data mining tasks, which can effectively avoid the impact of irrelevant and redundant features on the performance of classification models. In recent years, meta-heuristic algorithms have been widely used in FS problems, so a Hybrid Binary Chaotic Salp Swarm Dung Beetle Optimization (HBCSSDBO) algorithm is proposed in this paper to improve the effect of FS. In this hybrid algorithm, the original continuous optimization algorithm is converted into binary form by the S-type transfer function and applied to the FS problem. By combining the… More >

  • Open Access

    ARTICLE

    SNR and RSSI Based an Optimized Machine Learning Based Indoor Localization Approach: Multistory Round Building Scenario over LoRa Network

    Muhammad Ayoub Kamal1,3, Muhammad Mansoor Alam1,2,4,6, Aznida Abu Bakar Sajak1, Mazliham Mohd Su’ud2,5,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 1927-1945, 2024, DOI:10.32604/cmc.2024.052169 - 15 August 2024

    Abstract In situations when the precise position of a machine is unknown, localization becomes crucial. This research focuses on improving the position prediction accuracy over long-range (LoRa) network using an optimized machine learning-based technique. In order to increase the prediction accuracy of the reference point position on the data collected using the fingerprinting method over LoRa technology, this study proposed an optimized machine learning (ML) based algorithm. Received signal strength indicator (RSSI) data from the sensors at different positions was first gathered via an experiment through the LoRa network in a multistory round layout building. The More >

  • Open Access

    ARTICLE

    Outsmarting Android Malware with Cutting-Edge Feature Engineering and Machine Learning Techniques

    Ahsan Wajahat1, Jingsha He1, Nafei Zhu1, Tariq Mahmood2,3, Tanzila Saba2, Amjad Rehman Khan2, Faten S. Alamri4,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 651-673, 2024, DOI:10.32604/cmc.2024.047530 - 25 April 2024

    Abstract The growing usage of Android smartphones has led to a significant rise in incidents of Android malware and privacy breaches. This escalating security concern necessitates the development of advanced technologies capable of automatically detecting and mitigating malicious activities in Android applications (apps). Such technologies are crucial for safeguarding user data and maintaining the integrity of mobile devices in an increasingly digital world. Current methods employed to detect sensitive data leaks in Android apps are hampered by two major limitations they require substantial computational resources and are prone to a high frequency of false positives. This… More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868 - 11 March 2024

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) More >

  • Open Access

    ARTICLE

    Sentence Level Analysis Model for Phishing Detection Using KNN

    Lindah Sawe*, Joyce Gikandi, John Kamau, David Njuguna

    Journal of Cyber Security, Vol.6, pp. 25-39, 2024, DOI:10.32604/jcs.2023.045859 - 11 January 2024

    Abstract Phishing emails have experienced a rapid surge in cyber threats globally, especially following the emergence of the COVID-19 pandemic. This form of attack has led to substantial financial losses for numerous organizations. Although various models have been constructed to differentiate legitimate emails from phishing attempts, attackers continuously employ novel strategies to manipulate their targets into falling victim to their schemes. This form of attack has led to substantial financial losses for numerous organizations. While efforts are ongoing to create phishing detection models, their current level of accuracy and speed in identifying phishing emails is less… More >

  • Open Access

    ARTICLE

    Force Sensitive Resistors-Based Real-Time Posture Detection System Using Machine Learning Algorithms

    Arsal Javaid1, Areeb Abbas1, Jehangir Arshad1, Mohammad Khalid Imam Rahmani2,*, Sohaib Tahir Chauhdary3, Mujtaba Hussain Jaffery1, Abdulbasid S. Banga2,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1795-1814, 2023, DOI:10.32604/cmc.2023.044140 - 29 November 2023

    Abstract To detect the improper sitting posture of a person sitting on a chair, a posture detection system using machine learning classification has been proposed in this work. The addressed problem correlates to the third Sustainable Development Goal (SDG), ensuring healthy lives and promoting well-being for all ages, as specified by the World Health Organization (WHO). An improper sitting position can be fatal if one sits for a long time in the wrong position, and it can be dangerous for ulcers and lower spine discomfort. This novel study includes a practical implementation of a cushion consisting… More >

  • Open Access

    ARTICLE

    CNN Based Features Extraction and Selection Using EPO Optimizer for Cotton Leaf Diseases Classification

    Mehwish Zafar1, Javeria Amin2, Muhammad Sharif1, Muhammad Almas Anjum3, Seifedine Kadry4,5,6, Jungeun Kim7,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2779-2793, 2023, DOI:10.32604/cmc.2023.035860 - 08 October 2023

    Abstract Worldwide cotton is the most profitable cash crop. Each year the production of this crop suffers because of several diseases. At an early stage, computerized methods are used for disease detection that may reduce the loss in the production of cotton. Although several methods are proposed for the detection of cotton diseases, however, still there are limitations because of low-quality images, size, shape, variations in orientation, and complex background. Due to these factors, there is a need for novel methods for features extraction/selection for the accurate cotton disease classification. Therefore in this research, an optimized… More >

  • Open Access

    ARTICLE

    Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm

    Song Wang1,*, Fei Xie1, Fengye Yang1, Shengxuan Qiu1, Chuang Liu2, Tong Li3

    Energy Engineering, Vol.120, No.10, pp. 2273-2285, 2023, DOI:10.32604/ee.2023.030107 - 28 September 2023

    Abstract Winding is one of the most important components in power transformers. Ensuring the health state of the winding is of great importance to the stable operation of the power system. To efficiently and accurately diagnose the disc space variation (DSV) fault degree of transformer winding, this paper presents a diagnostic method of winding fault based on the K-Nearest Neighbor (KNN) algorithm and the frequency response analysis (FRA) method. First, a laboratory winding model is used, and DSV faults with four different degrees are achieved by changing disc space of the discs in the winding. Then,… More > Graphic Abstract

    Diagnosis of Disc Space Variation Fault Degree of Transformer Winding Based on K-Nearest Neighbor Algorithm

  • Open Access

    ARTICLE

    Outsourced Privacy-Preserving kNN Classifier Model Based on Multi-Key Homomorphic Encryption

    Chen Wang1, Jian Xu1,*, Jiarun Li1, Yan Dong1, Nitin Naik2

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1421-1436, 2023, DOI:10.32604/iasc.2023.034123 - 21 June 2023

    Abstract Outsourcing the k-Nearest Neighbor (kNN) classifier to the cloud is useful, yet it will lead to serious privacy leakage due to sensitive outsourced data and models. In this paper, we design, implement and evaluate a new system employing an outsourced privacy-preserving kNN Classifier Model based on Multi-Key Homomorphic Encryption (kNNCM-MKHE). We firstly propose a security protocol based on Multi-key Brakerski-Gentry-Vaikuntanathan (BGV) for collaborative evaluation of the kNN classifier provided by multiple model owners. Analyze the operations of kNN and extract basic operations, such as addition, multiplication, and comparison. It supports the computation of encrypted data… More >

  • Open Access

    ARTICLE

    Classification of Multi-view Digital Mammogram Images Using SMO-WkNN

    P. Malathi1,*, G. Charlyn Pushpa Latha2

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 1741-1758, 2023, DOI:10.32604/csse.2023.035185 - 09 February 2023

    Abstract Breast cancer (BCa) is a leading cause of death in the female population across the globe. Approximately 2.3 million new BCa cases are recorded globally in females, overtaking lung cancer as the most prevalent form of cancer to be diagnosed. However, the mortality rates for cervical and BCa are significantly higher in developing nations than in developed countries. Early diagnosis is the only option to minimize the risks of BCa. Deep learning (DL)-based models have performed well in image processing in recent years, particularly convolutional neural network (CNN). Hence, this research proposes a DL-based CNN… More >

Displaying 1-10 on page 1 of 37. Per Page