Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (38)
  • Open Access

    ARTICLE

    Rapid Parameter-Optimizing Strategy for Plug-and-Play Devices in DC Distribution Systems under the Background of Digital Transformation

    Zhi Li1, Yufei Zhao2, Yueming Ji2, Hanwen Gu2, Zaibin Jiao2,*

    Energy Engineering, Vol.121, No.12, pp. 3899-3927, 2024, DOI:10.32604/ee.2024.055899 - 22 November 2024

    Abstract By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement, information communication, and other fields, the digital DC distribution network can efficiently and reliably access Distributed Generator (DG) and Energy Storage Systems (ESS), exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play (PnP) operations. However, during device plug-in and -out processes, improper system parameters may lead to small-signal stability issues. Therefore, before executing PnP operations, conducting stability analysis and adjusting parameters swiftly is crucial. This study introduces a four-stage strategy for parameter optimization to enhance… More >

  • Open Access

    ARTICLE

    KGTLIR: An Air Target Intention Recognition Model Based on Knowledge Graph and Deep Learning

    Bo Cao1,*, Qinghua Xing2, Longyue Li2, Huaixi Xing1, Zhanfu Song1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1251-1275, 2024, DOI:10.32604/cmc.2024.052842 - 18 July 2024

    Abstract As a core part of battlefield situational awareness, air target intention recognition plays an important role in modern air operations. Aiming at the problems of insufficient feature extraction and misclassification in intention recognition, this paper designs an air target intention recognition method (KGTLIR) based on Knowledge Graph and Deep Learning. Firstly, the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism. Meanwhile, the accuracy, recall, and F1-score after iteration are introduced More >

  • Open Access

    ARTICLE

    LKPNR: Large Language Models and Knowledge Graph for Personalized News Recommendation Framework

    Hao Chen#, Runfeng Xie#, Xiangyang Cui, Zhou Yan, Xin Wang, Zhanwei Xuan*, Kai Zhang*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4283-4296, 2024, DOI:10.32604/cmc.2024.049129 - 20 June 2024

    Abstract Accurately recommending candidate news to users is a basic challenge of personalized news recommendation systems. Traditional methods are usually difficult to learn and acquire complex semantic information in news texts, resulting in unsatisfactory recommendation results. Besides, these traditional methods are more friendly to active users with rich historical behaviors. However, they can not effectively solve the long tail problem of inactive users. To address these issues, this research presents a novel general framework that combines Large Language Models (LLM) and Knowledge Graphs (KG) into traditional methods. To learn the contextual information of news text, we… More >

  • Open Access

    ARTICLE

    Factor Structure and Longitudinal Invariance of the CES-D across Diverse Residential Backgrounds in Chinese Adolescents

    Yanjing Cao1, Chenchen Xu1,2, Qi Li1, Shan Lu1,2,*, Jing Xiao1,*

    International Journal of Mental Health Promotion, Vol.26, No.4, pp. 261-269, 2024, DOI:10.32604/ijmhp.2024.043729 - 04 May 2024

    Abstract Background: Valid and reliable measures of depressive symptoms are crucial for understanding risk factors, outcomes, and interventions across rural and urban settings. Despite this need, the longitudinal invariance of these measures over time remains understudied. This research explores the structural components of the Center for Epidemiological Studies Depression Scale (CES-D) and examines its consistency across various living environments and temporal stability in a cohort of Chinese teenagers. Method: In the initial phase, 1,042 adolescents furnished demographic details and undertook the CES-D assessment. After a three-month interval, 967 of these participants repeated the CES-D evaluation. The… More >

  • Open Access

    ARTICLE

    A Deep Learning Framework for Mass-Forming Chronic Pancreatitis and Pancreatic Ductal Adenocarcinoma Classification Based on Magnetic Resonance Imaging

    Luda Chen1, Kuangzhu Bao2, Ying Chen2, Jingang Hao2,*, Jianfeng He1,3,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 409-427, 2024, DOI:10.32604/cmc.2024.048507 - 25 April 2024

    Abstract Pancreatic diseases, including mass-forming chronic pancreatitis (MFCP) and pancreatic ductal adenocarcinoma (PDAC), present with similar imaging features, leading to diagnostic complexities. Deep Learning (DL) methods have been shown to perform well on diagnostic tasks. Existing DL pancreatic lesion diagnosis studies based on Magnetic Resonance Imaging (MRI) utilize the prior information to guide models to focus on the lesion region. However, over-reliance on prior information may ignore the background information that is helpful for diagnosis. This study verifies the diagnostic significance of the background information using a clinical dataset. Consequently, the Prior Difference Guidance Network (PDGNet)… More >

  • Open Access

    ARTICLE

    Time and Space Efficient Multi-Model Convolution Vision Transformer for Tomato Disease Detection from Leaf Images with Varied Backgrounds

    Ankita Gangwar1, Vijaypal Singh Dhaka1, Geeta Rani2,*, Shrey Khandelwal1, Ester Zumpano3,4, Eugenio Vocaturo3,4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 117-142, 2024, DOI:10.32604/cmc.2024.048119 - 25 April 2024

    Abstract A consumption of 46.9 million tons of processed tomatoes was reported in 2022 which is merely 20% of the total consumption. An increase of 3.3% in consumption is predicted from 2024 to 2032. Tomatoes are also rich in iron, potassium, antioxidant lycopene, vitamins A, C and K which are important for preventing cancer, and maintaining blood pressure and glucose levels. Thus, tomatoes are globally important due to their widespread usage and nutritional value. To face the high demand for tomatoes, it is mandatory to investigate the causes of crop loss and minimize them. Diseases are… More >

  • Open Access

    ARTICLE

    Multi-Stream Temporally Enhanced Network for Video Salient Object Detection

    Dan Xu*, Jiale Ru, Jinlong Shi

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 85-104, 2024, DOI:10.32604/cmc.2023.045258 - 30 January 2024

    Abstract Video salient object detection (VSOD) aims at locating the most attractive objects in a video by exploring the spatial and temporal features. VSOD poses a challenging task in computer vision, as it involves processing complex spatial data that is also influenced by temporal dynamics. Despite the progress made in existing VSOD models, they still struggle in scenes of great background diversity within and between frames. Additionally, they encounter difficulties related to accumulated noise and high time consumption during the extraction of temporal features over a long-term duration. We propose a multi-stream temporal enhanced network (MSTENet)… More >

  • Open Access

    REVIEW

    A Survey of Knowledge Graph Construction Using Machine Learning

    Zhigang Zhao1, Xiong Luo1,2,3,*, Maojian Chen1,2,3, Ling Ma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 225-257, 2024, DOI:10.32604/cmes.2023.031513 - 30 December 2023

    Abstract Knowledge graph (KG) serves as a specialized semantic network that encapsulates intricate relationships among real-world entities within a structured framework. This framework facilitates a transformation in information retrieval, transitioning it from mere string matching to far more sophisticated entity matching. In this transformative process, the advancement of artificial intelligence and intelligent information services is invigorated. Meanwhile, the role of machine learning method in the construction of KG is important, and these techniques have already achieved initial success. This article embarks on a comprehensive journey through the last strides in the field of KG via machine More >

  • Open Access

    ARTICLE

    An Automatic Classification Grading of Spinach Seedlings Water Stress Based on N-MobileNetXt

    Yanlei Xu, Xue Cong, Yuting Zhai, Zhiyuan Gao, Helong Yu*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3019-3037, 2023, DOI:10.32604/iasc.2023.040330 - 11 September 2023

    Abstract To solve inefficient water stress classification of spinach seedlings under complex background, this study proposed an automatic classification method for the water stress level of spinach seedlings based on the N-MobileNetXt (NCAM+MobileNetXt) network. Firstly, this study reconstructed the Sandglass Block to effectively increase the model accuracy; secondly, this study introduced the group convolution module and a two-dimensional adaptive average pool, which can significantly compress the model parameters and enhance the model robustness separately; finally, this study innovatively proposed the Normalization-based Channel Attention Module (NCAM) to enhance the image features obviously. The experimental results showed that More >

  • Open Access

    ARTICLE

    An Efficient Memory Management for Mobile Operating Systems Based on Prediction of Relaunch Distance

    Jaehwan Lee1, Sangoh Park2,*

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 171-186, 2023, DOI:10.32604/csse.2023.038139 - 26 May 2023

    Abstract Recently, various mobile apps have included more features to improve user convenience. Mobile operating systems load as many apps into memory for faster app launching and execution. The least recently used (LRU)-based termination of cached apps is a widely adopted approach when free space of the main memory is running low. However, the LRU-based cached app termination does not distinguish between frequently or infrequently used apps. The app launch performance degrades if LRU terminates frequently used apps. Recent studies have suggested the potential of using users’ app usage patterns to predict the next app launch… More >

Displaying 1-10 on page 1 of 38. Per Page