Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (30)
  • Open Access

    ARTICLE

    Oversampling Method Based on Gaussian Distribution and K-Means Clustering

    Masoud Muhammed Hassan1, Adel Sabry Eesa1,*, Ahmed Jameel Mohammed2, Wahab Kh. Arabo1

    CMC-Computers, Materials & Continua, Vol.69, No.1, pp. 451-469, 2021, DOI:10.32604/cmc.2021.018280 - 04 June 2021

    Abstract Learning from imbalanced data is one of the greatest challenging problems in binary classification, and this problem has gained more importance in recent years. When the class distribution is imbalanced, classical machine learning algorithms tend to move strongly towards the majority class and disregard the minority. Therefore, the accuracy may be high, but the model cannot recognize data instances in the minority class to classify them, leading to many misclassifications. Different methods have been proposed in the literature to handle the imbalance problem, but most are complicated and tend to simulate unnecessary noise. In this More >

  • Open Access

    ARTICLE

    Driving Pattern Profiling and Classification Using Deep Learning

    Meenakshi Malik1, Rainu Nandal1, Surjeet Dalal2, Vivek Jalglan3, Dac-Nhuong Le4,5,*

    Intelligent Automation & Soft Computing, Vol.28, No.3, pp. 887-906, 2021, DOI:10.32604/iasc.2021.016272 - 20 April 2021

    Abstract The last several decades have witnessed an exponential growth in the means of transport globally, shrinking geographical distances and connecting the world. The automotive industry has grown by leaps and bounds, with millions of new vehicles being sold annually, be it for personal commuting or for public or commodity transport. However, millions of motor vehicles on the roads also mean an equal number of drivers with varying levels of skill and adherence to safety regulations. Very little has been done in the way of exploring and profiling driving patterns and vehicular usage using real world… More >

  • Open Access

    ARTICLE

    Determination of Cup to Disc Ratio Using Unsupervised Machine Learning Techniques for Glaucoma Detection

    R. Praveena*, T. R. GaneshBabu

    Molecular & Cellular Biomechanics, Vol.18, No.2, pp. 69-86, 2021, DOI:10.32604/mcb.2021.014622 - 09 April 2021

    Abstract The cup nerve head, optic cup, optic disc ratio and neural rim configuration are observed as important for detecting glaucoma at an early stage in clinical practice. The main clinical indicator of glaucoma optic cup to disc ratio is currently determined manually by limiting the mass screening was potential. This paper proposes the following methods for an automatic cup to disc ratio determination. In the first part of the work, fundus image of the optic disc region is considered. Clustering means K is used automatically to extract the optic disc whereas K-value is automatically selected… More >

  • Open Access

    ARTICLE

    The Application of Sparse Reconstruction Algorithm for Improving Background Dictionary in Visual Saliency Detection

    Lei Feng1,2, Haibin Li1,*, Yakun Gao1, Yakun Zhang1

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 831-839, 2020, DOI:10.32604/iasc.2020.010117

    Abstract In the paper, we apply the sparse reconstruction algorithm of improved background dictionary to saliency detection. Firstly, after super-pixel segmentation, two bottom features are extracted: the color information of LAB and the texture features of the image by Gabor filter. Secondly, the convex hull theory is used to remove object region in boundary region, and K-means clustering algorithm is used to continue to simplify the background dictionary. Finally, the saliency map is obtained by calculating the reconstruction error. Compared with the mainstream algorithms, the accuracy and efficiency of this algorithm are better than those of More >

  • Open Access

    ARTICLE

    Reducing Operational Time Complexity of k-NN Algorithms Using Clustering in Wrist-Activity Recognition

    Sun-Taag Choe, We-Duke Cho*, Jai-Hoon Kim, and Ki-Hyung Kim

    Intelligent Automation & Soft Computing, Vol.26, No.4, pp. 679-691, 2020, DOI:10.32604/iasc.2020.010102

    Abstract Recent research on activity recognition in wearable devices has identified a key challenge: k-nearest neighbors (k-NN) algorithms have a high operational time complexity. Thus, these algorithms are difficult to utilize in embedded wearable devices. Herein, we propose a method for reducing this complexity. We apply a clustering algorithm for learning data and assign labels to each cluster according to the maximum likelihood. Experimental results show that the proposed method achieves effective operational levels for implementation in embedded devices; however, the accuracy is slightly lower than that of a traditional k-NN algorithm. Additionally, our method provides More >

  • Open Access

    ARTICLE

    Prediction of College Students’ Physical Fitness Based on K-Means Clustering and SVR

    Peng Tang, Yu Wang, Ning Shen

    Computer Systems Science and Engineering, Vol.35, No.4, pp. 237-246, 2020, DOI:10.32604/csse.2020.35.237

    Abstract In today’s modern society, the physical fitness of college students is gradually declining. In this paper, a prediction model for college students’ physical fitness is established, in which support vector regression (SVR) and k-means clustering are combined together for the prediction of college students’ fitness. Firstly, the physical measurement data of college students are classified according to gender and class characteristics. Then, the k-means clustering method is used to classify the physical measurement data of college students. Next, the physical characteristics of college students are extracted by SVR to establish the prediction model of physical More >

  • Open Access

    ARTICLE

    Identification and Segmentation of Impurities Accumulated in a Cold-Trap Device by Using Radiographic Images

    Thamotharan B1,*, Venkatraman B2, Chandrasekaran S3

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 335-340, 2020, DOI:10.31209/2019.100000156

    Abstract Accumulation of impurities within cold trap device results in degradation of efficient performance in a nuclear reactor systems. The impurities have to be identified and the device has to be replaced periodically based on the accumulation level. Though there are a few techniques available to identify these impurities from the cold trap device, there are certain limitations in these techniques. In order to overcome these constraints, a new harmless and easy approach for identifying and separating the impurities using the radiographic images of cold traps is proposed in this paper. It includes a new segmentation More >

  • Open Access

    ARTICLE

    Hybrid Clustering Algorithms with GRASP to Construct an Initial Solution for the MVPPDP

    Abeer I. Alhujaylan1, 2, *, Manar I. Hosny1

    CMC-Computers, Materials & Continua, Vol.62, No.3, pp. 1025-1051, 2020, DOI:10.32604/cmc.2020.08742

    Abstract Mobile commerce (m-commerce) contributes to increasing the popularity of electronic commerce (e-commerce), allowing anybody to sell or buy goods using a mobile device or tablet anywhere and at any time. As demand for e-commerce increases tremendously, the pressure on delivery companies increases to organise their transportation plans to achieve profits and customer satisfaction. One important planning problem in this domain is the multi-vehicle profitable pickup and delivery problem (MVPPDP), where a selected set of pickup and delivery customers need to be served within certain allowed trip time. In this paper, we proposed hybrid clustering algorithms More >

  • Open Access

    ARTICLE

    A Hybrid Model for Anomalies Detection in AMI System Combining K-means Clustering and Deep Neural Network

    Assia Maamar1,*, Khelifa Benahmed2

    CMC-Computers, Materials & Continua, Vol.60, No.1, pp. 15-39, 2019, DOI:10.32604/cmc.2019.06497

    Abstract Recently, the radical digital transformation has deeply affected the traditional electricity grid and transformed it into an intelligent network (smart grid). This mutation is based on the progressive development of advanced technologies: advanced metering infrastructure (AMI) and smart meter which play a crucial role in the development of smart grid. AMI technologies have a promising potential in terms of improvement in energy efficiency, better demand management, and reduction in electricity costs. However the possibility of hacking smart meters and electricity theft is still among the most significant challenges facing electricity companies. In this regard, we… More >

  • Open Access

    ARTICLE

    Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection

    Ling Tan1,*, Chong Li2, Jingming Xia2, Jun Cao3

    CMC-Computers, Materials & Continua, Vol.61, No.1, pp. 275-288, 2019, DOI:10.32604/cmc.2019.03735

    Abstract Due to the widespread use of the Internet, customer information is vulnerable to computer systems attack, which brings urgent need for the intrusion detection technology. Recently, network intrusion detection has been one of the most important technologies in network security detection. The accuracy of network intrusion detection has reached higher accuracy so far. However, these methods have very low efficiency in network intrusion detection, even the most popular SOM neural network method. In this paper, an efficient and fast network intrusion detection method was proposed. Firstly, the fundamental of the two different methods are introduced More >

Displaying 21-30 on page 3 of 30. Per Page