Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Iris Liveness Detection Using Fragmental Energy of Haar Transformed Iris Images Using Ensemble of Machine Learning Classifiers

    Smita Khade1, Shilpa Gite1,2,*, Sudeep D. Thepade3, Biswajeet Pradhan4,5,*, Abdullah Alamri6

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 323-345, 2023, DOI:10.32604/cmes.2023.023674 - 05 January 2023

    Abstract Contactless verification is possible with iris biometric identification, which helps prevent infections like COVID-19 from spreading. Biometric systems have grown unsteady and dangerous as a result of spoofing assaults employing contact lenses, replayed the video, and print attacks. The work demonstrates an iris liveness detection approach by utilizing fragmental coefficients of Haar transformed Iris images as signatures to prevent spoofing attacks for the very first time in the identification of iris liveness. Seven assorted feature creation ways are studied in the presented solutions, and these created features are explored for the training of eight distinct… More > Graphic Abstract

    Iris Liveness Detection Using Fragmental Energy of Haar Transformed Iris Images Using Ensemble of Machine Learning Classifiers

  • Open Access

    ARTICLE

    An Optimised Defensive Technique to Recognize Adversarial Iris Images Using Curvelet Transform

    K. Meenakshi1,*, G. Maragatham2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 627-643, 2023, DOI:10.32604/iasc.2023.026961 - 06 June 2022

    Abstract Deep Learning is one of the most popular computer science techniques, with applications in natural language processing, image processing, pattern identification, and various other fields. Despite the success of these deep learning algorithms in multiple scenarios, such as spam detection, malware detection, object detection and tracking, face recognition, and automatic driving, these algorithms and their associated training data are rather vulnerable to numerous security threats. These threats ultimately result in significant performance degradation. Moreover, the supervised based learning models are affected by manipulated data known as adversarial examples, which are images with a particular level… More >

  • Open Access

    ARTICLE

    Robust EM Algorithm for Iris Segmentation Based on Mixture of Gaussian Distribution

    Fatma Mallouli

    Intelligent Automation & Soft Computing, Vol.25, No.2, pp. 243-248, 2019, DOI:10.31209/2019.100000069

    Abstract Density estimation via Gaussian mixture modelling has been successfully applied to image segmentation. In this paper, we have learned distributions mixture model to the pixel of an iris image as training data. We introduce the proposed algorithm by adapting the Expectation-Maximization (EM) algorithm. To further improve the accuracy for iris segmentation, we consider the EM algorithm in Markovian and non Markovian cases. Simulated data proves the accuracy of our algorithm. The proposed method is tested on a subset of the CASIA database by Chinese Academy of Sciences Institute of Automation-IrisTwins. The obtained results have shown More >

  • Open Access

    ABSTRACT

    Evaluation of Statistical Feature Encoding Techniques on Iris Images

    Chowhan S.S.1, G.N. Shinde2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.1, pp. 67-74, 2009, DOI:10.3970/icces.2009.009.067

    Abstract Feature selection, often used as a pre-processing step to machine learning, is designed to reduce dimensionality, eliminate irrelevant data and improve accuracy. Iris Basis is our first attempt to reduce the dimensionality of the problem while focusing only on parts of the scene that effectively identify the individual. Independent Component Analysis (ICA) is to extract iris feature to recognize iris pattern. Principal Component Analysis (PCA) is a dimension-reduction tool that can be used to reduce a large set of variables to a small set that still contains most of the information in the large set. More >

Displaying 1-10 on page 1 of 4. Per Page