Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (25)
  • Open Access

    ARTICLE

    Spatio-Temporal Flood Inundation Dynamics and Land Use Transformation in the Jhelum River Basin Using Remote Sensing and Historical Hydrological Data

    Ihsan Qadir1, Usama Naeem2, Ahmed Nouman3, Aamir Raza4, Jun Wu1,*

    Revue Internationale de Géomatique, Vol.34, pp. 831-853, 2025, DOI:10.32604/rig.2025.069020 - 10 November 2025

    Abstract The Jhelum River Basin in Pakistan has experienced recurrent and severe flooding over the past several decades, leading to substantial economic losses, infrastructure damage, and socio-environmental disruptions. This study uses multi-temporal satellite remote sensing data with historical hydrological records to map the spatial and temporal dynamics of major flood events occurring between 1988 and 2019. By utilizing satellite imagery from Landsat 5, Landsat 8, and Sentinel-2, key flood events were analyzed through the application of water indices such as the Normalized Difference Water Index (NDWI) and the Modified NDWI (MNDWI) to delineate flood extents. Historical… More >

  • Open Access

    PROCEEDINGS

    Internal Connection Between the Microstructures and the Mechanical Properties in Additive Manufacturing

    Yifei Wang, Zhao Zhang*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.3, pp. 1-1, 2025, DOI:10.32604/icces.2025.011121

    Abstract Additive manufacturing (AM) reveals high anisotropy in mechanical properties due to the thermal accumulation induced microstructures. How to reveal the internal connection between the microstructures and the mechanical properties in additive manufacturing is a challenge. There are many methods to predict the mechanical properties based on the microstructural evolutions in additive manufacturing [1–3]. Here we summarized the main methods for the prediction of the mechanical properties in additive manufacturing, including crystal plasticity finite element method (CPFEM), dislocation dynamics (DD), and molecular dynamics (MD). We systematically examine these primary approaches for mechanical property predictions in AM,… More >

  • Open Access

    ARTICLE

    ARPC1A Promotes NSCLC Malignancy via Stimulating the Drug Resistance and Cell Migration

    Hongjuan Guo1, Dan Liu1,2, Ruyu Yan1,2, Tianjing Zhang3, Kecheng Zhou1,2,*, Minxia Liu1,*

    BIOCELL, Vol.49, No.3, pp. 483-502, 2025, DOI:10.32604/biocell.2025.062143 - 31 March 2025

    Abstract Objectives: Non-small cell lung cancer (NSCLC) represents a formidable malignancy characterized by its marked metastatic potential and intrinsic resistance to therapeutic interventions. The identification of potential biomarkers delineating the progression and metastatic cascade of NSCLC assumes paramount importance in fostering advancements toward enhanced patient outcomes and prognostic stratification. Methods: The expression level of the actin-related protein 2/3 complex; subunit 1A (ARPC1A) in NSCLC was evaluated using The Cancer Genome Atlas (TCGA) and Gene Expression Profiling Interactive Analysis (GEPIA) databases; along with the LinkedOmics database for co-expression genes. Further verification of ARPC1A expression in normal lung cells… More >

  • Open Access

    ARTICLE

    Bayesian Stochastic INLA Application to the SIR-SI Model for Investigating Dengue Transmission Dynamics

    Mukhsar1,*, Andi Tenriawaru2, Gusti Ngurah Adhi Wibawa1, Bahriddin Abapihi1, Sitti Wirdhana Ahmad3, I Putu Sudayasa4

    Intelligent Automation & Soft Computing, Vol.40, pp. 177-193, 2025, DOI:10.32604/iasc.2025.058884 - 24 February 2025

    Abstract Despite extensive prevention efforts and research, dengue hemorrhagic fever (DHF) remains a major public health challenge, particularly in tropical regions, with significant social, economic, and health consequences. Statistical models are crucial in studying infectious DHF by providing a structured framework to analyze transmission dynamics between humans (hosts) and mosquitoes (vectors). Depending on the disease characteristics, different stochastic compartmental models can be employed. This research applies Bayesian Integrated Nested Laplace Approximation (INLA) to the SIR-SI model for DHF data. The method delivers accurate parameter estimates, improved computational efficiency, and effective integration with early warning systems. The… More >

  • Open Access

    PROCEEDINGS

    Effects of Spin Excitation on the Dislocation Dynamics in Body-Centered Cubic Iron

    Hideki Mori1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.32, No.1, pp. 1-1, 2024, DOI:10.32604/icces.2024.012935

    Abstract To design the mechanical strength of iron, it is very important to clarify the detail of dislocation dynamics in Body-Centered Cubic (BCC) Iron. The dislocation core structures are typically confined to the nanometer scale.
    This implies that the resistance force from discrete atomic columns has a direct bearing on dislocation mobility.
    Recently, we've developed a high-fidelity inter-atomic potential leveraging neural networks built upon density functional theory (DFT) data. By conducting dislocation dynamics simulations, we've addressed shortcomings inherent in classical inter-atomic potential approaches. Nonetheless, a significant challenge persists: a three- to four-fold deviation exists between More >

  • Open Access

    PROCEEDINGS

    The Simulation of Microstructures and Mechanical Properties in Wire Arc Additive Manufacturing

    Zhao Zhang1,*, Xiang Gao1, Yifei Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012115

    Abstract Wire arc additive manufacturing (WAAM) reveals its high efficiency for the fabrications in comparison with laser additive manufacturing. To reveal the relationship between arc settings and the microstructural evolutions, phase field model and Monte Carlo model are established for the simulation of the microstructural evolutions and dislocation dynamics model is established for the simulation of the anisotropic properties in WAAM. Numerical results are compared with Experiments to validate the proposed models. The length/width ratio of the formed grains in solidification becomes smaller when the scanning speed is decreased or the input powder is increased. The… More >

  • Open Access

    PROCEEDINGS

    Modeling and Simulation of Irradiation Hardening and Creep in Multi Principal Component Alloys

    Yang Chen1, Jing Peng1, Shuo Wang1, Chao Jiang1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.012299

    Abstract Nuclear energy demands radiation-resistant metal materials. Multi-principal element alloys (MPEAs) show superior radiation resistance over traditional alloys due to lattice distortion, promising for advanced reactors. However, damage evolution and mechanical performance of irradiated MPEAs under loading are unclear, limiting long-term application. We investigated hardening behavior induced by irradiation defects like dislocation loops and voids in MPEAs using crystal plasticity models and experiments. Here, we developed i) a stochastic field theory-based discrete dislocation dynamics simulation. A novel cross-slip mechanism in irradiated crystals was unveiled through co-linear reactions between dislocations and diamond perfect loops [1]; ii) With… More >

  • Open Access

    ARTICLE

    A Study on the Transmission Dynamics of the Omicron Variant of COVID-19 Using Nonlinear Mathematical Models

    S. Dickson1, S. Padmasekaran1, Pushpendra Kumar2,*, Kottakkaran Sooppy Nisar3, Hamidreza Marasi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2265-2287, 2024, DOI:10.32604/cmes.2023.030286 - 11 March 2024

    Abstract This research examines the transmission dynamics of the Omicron variant of COVID-19 using SEIQIcRVW and SQIRV models, considering the delay in converting susceptible individuals into infected ones. The significant delays eventually resulted in the pandemic’s containment. To ensure the safety of the host population, this concept integrates quarantine and the COVID-19 vaccine. We investigate the stability of the proposed models. The fundamental reproduction number influences stability conditions. According to our findings, asymptomatic cases considerably impact the prevalence of Omicron infection in the community. The real data of the Omicron variant from Chennai, Tamil Nadu, India, is More >

  • Open Access

    ARTICLE

    An Analysis of the Dynamic Behavior of Damaged Reinforced Concrete Bridges under Moving Vehicle Loads by Using the Moving Mesh Technique

    Fabrizio Greco*, Paolo Lonetti, Arturo Pascuzzo, Giulia Sansone

    Structural Durability & Health Monitoring, Vol.17, No.6, pp. 457-483, 2023, DOI:10.32604/sdhm.2023.030075 - 17 November 2023

    Abstract This work proposes a numerical investigation on the effects of damage on the structural response of Reinforced Concrete (RC) bridge structures commonly adopted in highway and railway networks. An effective three-dimensional FE-based numerical model is developed to analyze the bridge’s structural response under several damage scenarios, including the effects of moving vehicle loads. In particular, the longitudinal and transversal beams are modeled through solid finite elements, while horizontal slabs are made of shell elements. Damage phenomena are also incorporated in the numerical model according to a smeared approach consistent with Continuum Damage Mechanics (CDM). In… More >

  • Open Access

    PROCEEDINGS

    Ion dynamics and Manipulation Under Extreme Confinement

    Yahui Xue1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09724

    Abstract Ion dynamics and precise control in nanochannels play key roles in biological systems, energy conversation, and environmental engineering. However, the mechanics behaviors of ions and their manipulation mechanism under extreme confinement remain largely unexplored. Biological ion channels acting as life’s transistors can gate simultaneously fast and selective ion transport through atomic-scale filters to maintain vital life functions. This biological inspiration motivates the quest for artificial structures with simultaneous functions of ion selectivity, fast transport and electrical gating at the atomic scale. Here, we experimentally investigate the ion dynamics and electrical manipulation in graphene channels of… More >

Displaying 1-10 on page 1 of 25. Per Page