Khalid A. AlAfandy1, Hicham Omara2, Hala S. El-Sayed3, Mohammed Baz4,*, Mohamed Lazaar5, Osama S. Faragallah6, Mohammed Al Achhab1
CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 739-753, 2022, DOI:10.32604/cmc.2022.022457
- 24 February 2022
Abstract Remote sensing image processing engaged researchers’ attentiveness in recent years, especially classification. The main problem in classification is the ratio of the correct predictions after training. Feature extraction is the foremost important step to build high-performance image classifiers. The convolution neural networks can extract images’ features that significantly improve the image classifiers’ accuracy. This paper proposes two efficient approaches for remote sensing images classification that utilizes the concatenation of two convolution channels’ outputs as a features extraction using two classic convolution models; these convolution models are the ResNet 50 and the DenseNet 169. These elicited… More >