Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (140)
  • Open Access

    ARTICLE

    Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning

    Misbah Anwer1,*, Ghufran Ahmed1, Maha Abdelhaq2, Raed Alsaqour3, Shahid Hussain4, Adnan Akhunzada5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068673 - 10 November 2025

    Abstract The exponential growth of the Internet of Things (IoT) has introduced significant security challenges, with zero-day attacks emerging as one of the most critical and challenging threats. Traditional Machine Learning (ML) and Deep Learning (DL) techniques have demonstrated promising early detection capabilities. However, their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints, high computational costs, and the costly time-intensive process of data labeling. To address these challenges, this study proposes a Federated Learning (FL) framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in… More >

  • Open Access

    ARTICLE

    GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT

    Wanwei Huang1,*, Huicong Yu1, Jiawei Ren2, Kun Wang3, Yanbu Guo1, Lifeng Jin4

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-24, 2026, DOI:10.32604/cmc.2025.068493 - 10 November 2025

    Abstract Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity. These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy. This paper proposes an industrial Internet of Things intrusion detection feature selection algorithm based on an improved whale optimization algorithm (GSLDWOA). The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to, such as local optimality, long detection time, and reduced accuracy. First, the initial population’s diversity is increased using the Gaussian Mutation More >

  • Open Access

    ARTICLE

    Cross-Dataset Transformer-IDS with Calibration and AUC Optimization (Evaluated on NSL-KDD, UNSW-NB15, CIC-IDS2017)

    Chaonan Xin*, Keqing Xu

    Journal of Cyber Security, Vol.7, pp. 483-503, 2025, DOI:10.32604/jcs.2025.071627 - 28 November 2025

    Abstract Intrusion Detection Systems (IDS) have achieved high accuracy on benchmark datasets, yet models often fail to generalize across different network environments. In this paper, we propose Transformer-IDS, a transformer-based network intrusion detection model designed for cross-dataset generalization. The model incorporates a classification token, multi-head self-attention, and embedding layers to learn versatile features, and it introduces a calibration module and an AUC-oriented optimization objective to improve reliability and ranking performance. We evaluate Transformer-IDS on three prominent datasets (NSL-KDD, UNSW-NB15, CIC-IDS2017) in both within-dataset and cross-dataset scenarios. Results demonstrate that while conventional deep IDS models (e.g., CNN-LSTM More >

  • Open Access

    ARTICLE

    Enhancing Roaming Security in Cloud-Native 5G Core Network through Deep Learning-Based Intrusion Detection System

    I Wayan Adi Juliawan Pawana1,2, Vincent Abella2, Jhury Kevin Lastre2, Yongho Ko2, Ilsun You2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2733-2760, 2025, DOI:10.32604/cmes.2025.072611 - 26 November 2025

    Abstract Roaming in 5G networks enables seamless global mobility but also introduces significant security risks due to legacy protocol dependencies, uneven Security Edge Protection Proxy (SEPP) deployment, and the dynamic nature of inter-Public Land Mobile Network (inter-PLMN) signaling. Traditional rule-based defenses are inadequate for protecting cloud-native 5G core networks, particularly as roaming expands into enterprise and Internet of Things (IoT) domains. This work addresses these challenges by designing a scalable 5G Standalone testbed, generating the first intrusion detection dataset specifically tailored to roaming threats, and proposing a deep learning based intrusion detection framework for cloud-native environments.… More > Graphic Abstract

    Enhancing Roaming Security in Cloud-Native 5G Core Network through Deep Learning-Based Intrusion Detection System

  • Open Access

    ARTICLE

    Boosting Cybersecurity: A Zero-Day Attack Detection Approach Using Equilibrium Optimiser with Deep Learning Model

    Mona Almofarreh1, Amnah Alshahrani2, Nouf Helal Alharbi3, Ahmed Omer Ahmed4, Hussain Alshahrani5, Abdulrahman Alzahrani6,*, Mohammed Mujib Alshahrani7, Asma A. Alhashmi8

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2631-2656, 2025, DOI:10.32604/cmes.2025.070545 - 26 November 2025

    Abstract Zero-day attacks use unknown vulnerabilities that prevent being identified by cybersecurity detection tools. This study indicates that zero-day attacks have a significant impact on computer security. A conventional signature-based detection algorithm is not efficient at recognizing zero-day attacks, as the signatures of zero-day attacks are usually not previously accessible. A machine learning (ML)-based detection algorithm is proficient in capturing statistical features of attacks and, therefore, optimistic for zero-day attack detection. ML and deep learning (DL) are employed for designing intrusion detection systems. The improvement of absolute varieties of novel cyberattacks poses significant challenges for IDS… More >

  • Open Access

    ARTICLE

    GWO-LightGBM: A Hybrid Grey Wolf Optimized Light Gradient Boosting Model for Cyber-Physical System Security

    Adeel Munawar1, Muhammad Nadeem Ali2, Awais Qasim3, Byung-Seo Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 1189-1211, 2025, DOI:10.32604/cmes.2025.071876 - 30 October 2025

    Abstract Cyber-physical systems (CPS) represent a sophisticated integration of computational and physical components that power critical applications such as smart manufacturing, healthcare, and autonomous infrastructure. However, their extensive reliance on internet connectivity makes them increasingly susceptible to cyber threats, potentially leading to operational failures and data breaches. Furthermore, CPS faces significant threats related to unauthorized access, improper management, and tampering of the content it generates. In this paper, we propose an intrusion detection system (IDS) optimized for CPS environments using a hybrid approach by combining a nature-inspired feature selection scheme, such as Grey Wolf Optimization (GWO),… More >

  • Open Access

    ARTICLE

    A Genetic Algorithm-Based Double Auction Framework for Secure and Scalable Resource Allocation in Cloud-Integrated Intrusion Detection Systems

    Siraj Un Muneer1, Ihsan Ullah1, Zeshan Iqbal2,*, Rajermani Thinakaran3

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4959-4975, 2025, DOI:10.32604/cmc.2025.068566 - 23 October 2025

    Abstract The complexity of cloud environments challenges secure resource management, especially for intrusion detection systems (IDS). Existing strategies struggle to balance efficiency, cost fairness, and threat resilience. This paper proposes an innovative approach to managing cloud resources through the integration of a genetic algorithm (GA) with a “double auction” method. This approach seeks to enhance security and efficiency by aligning buyers and sellers within an intelligent market framework. It guarantees equitable pricing while utilizing resources efficiently and optimizing advantages for all stakeholders. The GA functions as an intelligent search mechanism that identifies optimal combinations of bids More >

  • Open Access

    ARTICLE

    ScalaDetect-5G: Ultra High-Precision Highly Elastic Deep Intrusion Detection System for 5G Network

    Shengjia Chang, Baojiang Cui*, Shaocong Feng

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3805-3827, 2025, DOI:10.32604/cmes.2025.067756 - 30 September 2025

    Abstract With the rapid advancement of mobile communication networks, key technologies such as Multi-access Edge Computing (MEC) and Network Function Virtualization (NFV) have enhanced the quality of service for 5G users but have also significantly increased the complexity of network threats. Traditional static defense mechanisms are inadequate for addressing the dynamic and heterogeneous nature of modern attack vectors. To overcome these challenges, this paper presents a novel algorithmic framework, SD-5G, designed for high-precision intrusion detection in 5G environments. SD-5G adopts a three-stage architecture comprising traffic feature extraction, elastic representation, and adaptive classification. Specifically, an enhanced Concrete… More >

  • Open Access

    ARTICLE

    Unveiling CyberFortis: A Unified Security Framework for IIoT-SCADA Systems with SiamDQN-AE FusionNet and PopHydra Optimizer

    Kuncham Sreenivasa Rao1, Rajitha Kotoju2, B. Ramana Reddy3, Taher Al-Shehari4, Nasser A. Alsadhan5, Subhav Singh6,7,8, Shitharth Selvarajan9,10,11,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1899-1916, 2025, DOI:10.32604/cmc.2025.064728 - 29 August 2025

    Abstract Protecting Supervisory Control and Data Acquisition-Industrial Internet of Things (SCADA-IIoT) systems against intruders has become essential since industrial control systems now oversee critical infrastructure, and cyber attackers more frequently target these systems. Due to their connection of physical assets with digital networks, SCADA-IIoT systems face substantial risks from multiple attack types, including Distributed Denial of Service (DDoS), spoofing, and more advanced intrusion methods. Previous research in this field faces challenges due to insufficient solutions, as current intrusion detection systems lack the necessary accuracy, scalability, and adaptability needed for IIoT environments. This paper introduces CyberFortis, a… More >

  • Open Access

    ARTICLE

    Enhancing Healthcare Cybersecurity through the Development and Evaluation of Intrusion Detection Systems

    Muhammad Usama1, Arshad Aziz2, Imtiaz Hassan2, Shynar Akhmetzhanova3, Sultan Noman Qasem4,*, Abdullah M. Albarrak4, Tawfik Al-Hadhrami5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.1, pp. 1225-1248, 2025, DOI:10.32604/cmes.2025.067098 - 31 July 2025

    Abstract The increasing reliance on digital infrastructure in modern healthcare systems has introduced significant cybersecurity challenges, particularly in safeguarding sensitive patient data and maintaining the integrity of medical services. As healthcare becomes more data-driven, cyberattacks targeting these systems continue to rise, necessitating the development of robust, domain-adapted Intrusion Detection Systems (IDS). However, current IDS solutions often lack access to domain-specific datasets that reflect realistic threat scenarios in healthcare. To address this gap, this study introduces HCKDDCUP, a synthetic dataset modeled on the widely used KDDCUP benchmark, augmented with healthcare-relevant attributes such as patient data, treatments, and… More >

Displaying 1-10 on page 1 of 140. Per Page