Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (20)
  • Open Access

    ARTICLE

    Orbit Weighting Scheme in the Context of Vector Space Information Retrieval

    Ahmad Ababneh1, Yousef Sanjalawe2, Salam Fraihat3,*, Salam Al-E’mari4, Hamzah Alqudah5

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1347-1379, 2024, DOI:10.32604/cmc.2024.050600 - 18 July 2024

    Abstract This study introduces the Orbit Weighting Scheme (OWS), a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval (IR) models, which have traditionally relied on weighting schemes like tf-idf and BM25. These conventional methods often struggle with accurately capturing document relevance, leading to inefficiencies in both retrieval performance and index size management. OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space, emphasizing term relationships and distribution patterns overlooked by existing models. Our research focuses on evaluating OWS’s impact… More >

  • Open Access

    ARTICLE

    Design of Artificial Intelligence Companion Chatbot

    Xiaoying Chen1,*, Jie Kang1, Cong Hu2

    Journal of New Media, Vol.6, pp. 1-16, 2024, DOI:10.32604/jnm.2024.045833 - 28 March 2024

    Abstract With the development of cities and the prevalence of networks, interpersonal relationships have become increasingly distant. When people crave communication, they hope to find someone to confide in. With the rapid advancement of deep learning and big data technologies, an enabling environment has been established for the development of intelligent chatbot systems. By effectively combining cutting-edge technologies with human-centered design principles, chatbots hold the potential to revolutionize our lives and alleviate feelings of loneliness. A multi-topic chat companion robot based on a state machine has been proposed, which can engage in fluent dialogue with humans… More >

  • Open Access

    ARTICLE

    A Weighted Multi-Layer Analytics Based Model for Emoji Recommendation

    Amira M. Idrees1,*, Abdul Lateef Marzouq Al-Solami2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1115-1133, 2024, DOI:10.32604/cmc.2023.046457 - 30 January 2024

    Abstract The developed system for eye and face detection using Convolutional Neural Networks (CNN) models, followed by eye classification and voice-based assistance, has shown promising potential in enhancing accessibility for individuals with visual impairments. The modular approach implemented in this research allows for a seamless flow of information and assistance between the different components of the system. This research significantly contributes to the field of accessibility technology by integrating computer vision, natural language processing, and voice technologies. By leveraging these advancements, the developed system offers a practical and efficient solution for assisting blind individuals. The modular… More >

  • Open Access

    ARTICLE

    Asymmetric Consortium Blockchain and Homomorphically Polynomial-Based PIR for Secured Smart Parking Systems

    T. Haritha, A. Anitha*

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3923-3939, 2023, DOI:10.32604/cmc.2023.036278 - 31 March 2023

    Abstract In crowded cities, searching for the availability of parking lots is a herculean task as it results in the wastage of drivers’ time, increases air pollution, and traffic congestion. Smart parking systems facilitate the drivers to determine the information about the parking lot in real time and book them depending on the requirement. But the existing smart parking systems necessitate the drivers to reveal their sensitive information that includes their mobile number, personal identity, and desired destination. This disclosure of sensitive information makes the existing centralized smart parking systems more vulnerable to service providers’ security… More >

  • Open Access

    ARTICLE

    Natural Language Processing with Optimal Deep Learning-Enabled Intelligent Image Captioning System

    Radwa Marzouk1, Eatedal Alabdulkreem2, Mohamed K. Nour3, Mesfer Al Duhayyim4,*, Mahmoud Othman5, Abu Sarwar Zamani6, Ishfaq Yaseen6, Abdelwahed Motwakel6

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 4435-4451, 2023, DOI:10.32604/cmc.2023.033091 - 31 October 2022

    Abstract The recent developments in Multimedia Internet of Things (MIoT) devices, empowered with Natural Language Processing (NLP) model, seem to be a promising future of smart devices. It plays an important role in industrial models such as speech understanding, emotion detection, home automation, and so on. If an image needs to be captioned, then the objects in that image, its actions and connections, and any silent feature that remains under-projected or missing from the images should be identified. The aim of the image captioning process is to generate a caption for image. In next step, the… More >

  • Open Access

    ARTICLE

    Ontology-Based News Linking for Semantic Temporal Queries

    Muhammad Islam Satti1, Jawad Ahmed2, Hafiz Syed Muhammad Muslim1, Akber Abid Gardezi3, Shafiq Ahmad4, Abdelaty Edrees Sayed4, Salman Naseer5, Muhammad Shafiq6,*

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 3913-3929, 2023, DOI:10.32604/cmc.2023.033001 - 31 October 2022

    Abstract Daily newspapers publish a tremendous amount of information disseminated through the Internet. Freely available and easily accessible large online repositories are not indexed and are in an un-processable format. The major hindrance in developing and evaluating existing/new monolingual text in an image is that it is not linked and indexed. There is no method to reuse the online news images because of the unavailability of standardized benchmark corpora, especially for South Asian languages. The corpus is a vital resource for developing and evaluating text in an image to reuse local news systems in general and… More >

  • Open Access

    ARTICLE

    Shallow Neural Network and Ontology-Based Novel Semantic Document Indexing for Information Retrieval

    Anil Sharma1,*, Suresh Kumar2

    Intelligent Automation & Soft Computing, Vol.34, No.3, pp. 1989-2005, 2022, DOI:10.32604/iasc.2022.026095 - 25 May 2022

    Abstract Information Retrieval (IR) systems are developed to fetch the most relevant content matching the user’s information needs from a pool of information. A user expects to get IR results based on the conceptual contents of the query rather than keywords. But traditional IR approaches index documents based on the terms that they contain and ignore semantic descriptions of document contents. This results in a vocabulary gap when queries and documents use different terms to describe the same concept. As a solution to this problem and to improve the performance of IR systems, we have designed… More >

  • Open Access

    ARTICLE

    Contextual Text Mining Framework for Unstructured Textual Judicial Corpora through Ontologies

    Zubair Nabi1, Ramzan Talib1,*, Muhammad Kashif Hanif1, Muhammad Awais2

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 1357-1374, 2022, DOI:10.32604/csse.2022.025712 - 09 May 2022

    Abstract Digitalization has changed the way of information processing, and new techniques of legal data processing are evolving. Text mining helps to analyze and search different court cases available in the form of digital text documents to extract case reasoning and related data. This sort of case processing helps professionals and researchers to refer the previous case with more accuracy in reduced time. The rapid development of judicial ontologies seems to deliver interesting problem solving to legal knowledge formalization. Mining context information through ontologies from corpora is a challenging and interesting field. This research paper presents More >

  • Open Access

    ARTICLE

    Deep Neural Network and Pseudo Relevance Feedback Based Query Expansion

    Abhishek Kumar Shukla*, Sujoy Das

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3557-3570, 2022, DOI:10.32604/cmc.2022.022411 - 07 December 2021

    Abstract The neural network has attracted researchers immensely in the last couple of years due to its wide applications in various areas such as Data mining, Natural language processing, Image processing, and Information retrieval etc. Word embedding has been applied by many researchers for Information retrieval tasks. In this paper word embedding-based skip-gram model has been developed for the query expansion task. Vocabulary terms are obtained from the top “k” initially retrieved documents using the Pseudo relevance feedback model and then they are trained using the skip-gram model to find the expansion terms for the user… More >

  • Open Access

    ARTICLE

    Personalized Information Retrieval from Friendship Strength of Social Media Comments

    Fiaz Majeed1, Noman Yousaf2, Muhammad Shafiq3,*, Mohammed Ahmed Basheikh4, Wazir Zada Khan5, Akber Abid Gardezi6, Waqar Aslam7, Jin-Ghoo Choi3

    Intelligent Automation & Soft Computing, Vol.32, No.1, pp. 15-30, 2022, DOI:10.32604/iasc.2022.015685 - 26 October 2021

    Abstract Social networks have become an important venue to express the feelings of their users on a large scale. People are intuitive to use social networks to express their feelings, discuss ideas, and invite folks to take suggestions. Every social media user has a circle of friends. The suggestions of these friends are considered important contributions. Users pay more attention to suggestions provided by their friends or close friends. However, as the content on the Internet increases day by day, user satisfaction decreases at the same rate due to unsatisfactory search results. In this regard, different… More >

Displaying 1-10 on page 1 of 20. Per Page