Sonia Goel1,#, Meena Tushir1, Jyoti Arora2, Tripti Sharma2, Deepali Gupta3, Ali Nauman4,#, Ghulam Muhammad5,*
CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3125-3145, 2024, DOI:10.32604/cmc.2024.054476
- 18 November 2024
Abstract In numerous real-world healthcare applications, handling incomplete medical data poses significant challenges for missing value imputation and subsequent clustering or classification tasks. Traditional approaches often rely on statistical methods for imputation, which may yield suboptimal results and be computationally intensive. This paper aims to integrate imputation and clustering techniques to enhance the classification of incomplete medical data with improved accuracy. Conventional classification methods are ill-suited for incomplete medical data. To enhance efficiency without compromising accuracy, this paper introduces a novel approach that combines imputation and clustering for the classification of incomplete data. Initially, the linear More >