Shah Faisal1, Kashif Javed1, Sara Ali1, Areej Alasiry2, Mehrez Marzougui2, Muhammad Attique Khan3,*, Jae-Hyuk Cha4,*
CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 895-914, 2023, DOI:10.32604/cmc.2023.039781
- 08 June 2023
Abstract Citrus fruit crops are among the world’s most important agricultural products, but pests and diseases impact their cultivation, resulting in yield and quality losses. Computer vision and machine learning have been widely used to detect and classify plant diseases over the last decade, allowing for early disease detection and improving agricultural production. This paper presented an automatic system for the early detection and classification of citrus plant diseases based on a deep learning (DL) model, which improved accuracy while decreasing computational complexity. The most recent transfer learning-based models were applied to the Citrus Plant Dataset More >