Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Political Optimizer with Deep Learning-Enabled Tongue Color Image Analysis Model

    Anwer Mustafa Hilal1,*, Eatedal Alabdulkreem2, Jaber S. Alzahrani3, Majdy M. Eltahir4, Mohamed I. Eldesouki5, Ishfaq Yaseen1, Abdelwahed Motwakel1, Radwa Marzouk6

    Computer Systems Science and Engineering, Vol.45, No.2, pp. 1129-1143, 2023, DOI:10.32604/csse.2023.030080 - 03 November 2022

    Abstract Biomedical image processing is widely utilized for disease detection and classification of biomedical images. Tongue color image analysis is an effective and non-invasive tool for carrying out secondary detection at anytime and anywhere. For removing the qualitative aspect, tongue images are quantitatively inspected, proposing a novel disease classification model in an automated way is preferable. This article introduces a novel political optimizer with deep learning enabled tongue color image analysis (PODL-TCIA) technique. The presented PODL-TCIA model purposes to detect the occurrence of the disease by examining the color of the tongue. To attain this, the More >

  • Open Access

    ARTICLE

    Optimal Deep Learning Based Inception Model for Cervical Cancer Diagnosis

    Tamer AbuKhalil1, Bassam A. Y. Alqaralleh2,*, Ahmad H. Al-Omari3

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 57-71, 2022, DOI:10.32604/cmc.2022.024367 - 24 February 2022

    Abstract Prevention of cervical cancer becomes essential and is carried out by the use of Pap smear images. Pap smear test analysis is laborious and tiresome work performed visually using a cytopathologist. Therefore, automated cervical cancer diagnosis using automated methods are necessary. This paper designs an optimal deep learning based Inception model for cervical cancer diagnosis (ODLIM-CCD) using pap smear images. The proposed ODLIM-CCD technique incorporates median filtering (MF) based pre-processing to discard the noise and Otsu model based segmentation process. Besides, deep convolutional neural network (DCNN) based Inception with Residual Network (ResNet) v2 model is More >

  • Open Access

    ARTICLE

    A Step-Based Deep Learning Approach for Network Intrusion Detection

    Yanyan Zhang1, Xiangjin Ran2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1231-1245, 2021, DOI:10.32604/cmes.2021.016866 - 11 August 2021

    Abstract In the network security field, the network intrusion detection system (NIDS) is considered one of the critical issues in the detection accuracy and missed detection rate. In this paper, a method of two-step network intrusion detection on the basis of GoogLeNet Inception and deep convolutional neural networks (CNNs) models is proposed. The proposed method used the GoogLeNet Inception model to identify the network packets’ binary problem. Subsequently, the characteristics of the packets’ raw data and the traffic features are extracted. The CNNs model is also used to identify the multiclass intrusions by the network packets’ More >

  • Open Access

    ARTICLE

    Automated Meter Reading Detection Using Inception with Single Shot Multi-Box Detector

    Arif Iqbal*, Abdul Basit, Imran Ali, Junaid Babar, Ihsan Ullah

    Intelligent Automation & Soft Computing, Vol.27, No.2, pp. 299-309, 2021, DOI:10.32604/iasc.2021.014250 - 18 January 2021

    Abstract Automated meter reading has recently been adopted by utility service providers for improving the reading and billing process. Images captured during meter reading are incorporated in consumer bills to prevent reporting false reading and ensure transparency. The availability of images captured during the meter reading process presents the potential of completely automating the meter reading process. This paper proposes a convolutional network-based multi-box model for the automatic meter reading. The proposed research leverages the inception model with a single shot detector to achieve high accuracy and efficiency compared to the existing state-of-the-art machine learning methods. More >

Displaying 1-10 on page 1 of 4. Per Page