Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    SPH and FEM Investigation of Hydrodynamic Impact Problems

    Al-Bahkali Essam1, Souli Mhamed2, Al-Bahkali Thamar1

    CMC-Computers, Materials & Continua, Vol.46, No.1, pp. 57-78, 2015, DOI:10.3970/cmc.2015.046.057

    Abstract Simulation of hydrodynamic impact problems and its effect on surrounding structures, can be considered as a fluid structure coupling problem. The application is mainly used in automotive and aerospace engineering and also in civil engineering. Classical FEM and Finite Volume methods were the main formulations used by engineers to solve these problems. For the last decades, new formulations have been developed for fluid structure coupling applications using mesh free methods as SPH method, (Smooth Particle Hydrodynamic) and DEM (Discrete Element Method). Up to these days very little has been done to compare different methods and… More >

  • Open Access

    ARTICLE

    A New Combined Scheme of Discrete Element Method and Meshless Method for Numerical Simulation of Continuum/Discontinuum Transformation

    Li Shan, Ning Cui, Ming Cheng, Kaixin Liu

    CMES-Computer Modeling in Engineering & Sciences, Vol.83, No.4, pp. 353-384, 2012, DOI:10.3970/cmes.2012.083.353

    Abstract In the present paper, a combined scheme of discrete element method (DEM) and meshless method for numerical simulation of impact problems is proposed. Based on the basic principle of continuum mechanics, an axisymmetric DEM framework is established for modeling the elastoplastic behavior of solid materials. Failure criteria are introduced to model the transformation from a continuum to a discontinuum. The friction force between contact elements is also considered after the failure appears. So our scheme can calculate not only the behavior of continuum and discontinuum, but also the transformation process from a continuum to a More >

  • Open Access

    ABSTRACT

    A New Combined Scheme of Discrete Element Method and Meshless Method for Numerical Simulation of Impact Problems

    Li Shan, Ming Cheng, Kaixin Liu

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 87-88, 2011, DOI:10.3970/icces.2011.019.087

    Abstract In the present paper, a combined scheme of discrete element method (DEM) and meshless method for numerical simulation of impact problems is proposed. Based on the basic principle of continuum mechanics, an axisymmetric DEM framework is estabilished for modeling the elastoplastic behavior of solid materials. A failure criterion is introduced to model the transformation from a continuum to a discontinuum. The friction force between contact elements is also considered after the failure appears. So our scheme can calculate not only the behavior of continuum and discontinuum, but also the transformation process from continuum to discontinuum. More >

  • Open Access

    ARTICLE

    An Explicit Discontinuous Time Integration Method For Dynamic-Contact/Impact Problems

    Jin Yeon Cho1, Seung Jo Kim2

    CMES-Computer Modeling in Engineering & Sciences, Vol.3, No.6, pp. 687-698, 2002, DOI:10.3970/cmes.2002.003.687

    Abstract In this work, an explicit solution procedure for the recently developed discontinuous time integration method is proposed in order to reduce the computational cost while maintaining the desirable numerical characteristics of the discontinuous time integration method. In the present explicit solution procedure, a two-stage correction algorithm is devised to obtain the solution at the next time step without any matrix factorization. To observe the numerical characteristics of the proposed explicit solution procedure, stability and convergence analyses are performed. From the stability analysis, it is observed that the proposed algorithm gives a larger critical time step More >

Displaying 1-10 on page 1 of 4. Per Page