Jyoti Arora1, Meena Tushir2, Keshav Sharma1, Lalit Mohan1, Aman Singh3,*, Abdullah Alharbi4, Wael Alosaimi4
CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 4801-4817, 2022, DOI:10.32604/cmc.2022.025960
- 28 July 2022
Abstract Datasets with the imbalanced class distribution are difficult to handle with the standard classification algorithms. In supervised learning, dealing with the problem of class imbalance is still considered to be a challenging research problem. Various machine learning techniques are designed to operate on balanced datasets; therefore, the state of the art, different under-sampling, over-sampling and hybrid strategies have been proposed to deal with the problem of imbalanced datasets, but highly skewed datasets still pose the problem of generalization and noise generation during resampling. To over-come these problems, this paper proposes a majority clustering model for… More >