Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,164)
  • Open Access

    ARTICLE

    Enhancing Dense Small Object Detection in UAV Images Based on Hybrid Transformer

    Changfeng Feng1, Chunping Wang2, Dongdong Zhang1, Renke Kou1, Qiang Fu1,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3993-4013, 2024, DOI:10.32604/cmc.2024.048351

    Abstract Transformer-based models have facilitated significant advances in object detection. However, their extensive computational consumption and suboptimal detection of dense small objects curtail their applicability in unmanned aerial vehicle (UAV) imagery. Addressing these limitations, we propose a hybrid transformer-based detector, H-DETR, and enhance it for dense small objects, leading to an accurate and efficient model. Firstly, we introduce a hybrid transformer encoder, which integrates a convolutional neural network-based cross-scale fusion module with the original encoder to handle multi-scale feature sequences more efficiently. Furthermore, we propose two novel strategies to enhance detection performance without incurring additional inference computation. Query filter is designed… More >

  • Open Access

    ARTICLE

    Multimodality Medical Image Fusion Based on Pixel Significance with Edge-Preserving Processing for Clinical Applications

    Bhawna Goyal1, Ayush Dogra2, Dawa Chyophel Lepcha1, Rajesh Singh3, Hemant Sharma4, Ahmed Alkhayyat5, Manob Jyoti Saikia6,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4317-4342, 2024, DOI:10.32604/cmc.2024.047256

    Abstract Multimodal medical image fusion has attained immense popularity in recent years due to its robust technology for clinical diagnosis. It fuses multiple images into a single image to improve the quality of images by retaining significant information and aiding diagnostic practitioners in diagnosing and treating many diseases. However, recent image fusion techniques have encountered several challenges, including fusion artifacts, algorithm complexity, and high computing costs. To solve these problems, this study presents a novel medical image fusion strategy by combining the benefits of pixel significance with edge-preserving processing to achieve the best fusion performance. First, the method employs a cross-bilateral… More >

  • Open Access

    ARTICLE

    Secure Transmission of Compressed Medical Image Sequences on Communication Networks Using Motion Vector Watermarking

    Rafi Ullah1,*, Mohd Hilmi bin Hasan1, Sultan Daud Khan2, Mussadiq Abdul Rahim3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3283-3301, 2024, DOI:10.32604/cmc.2024.046305

    Abstract Medical imaging plays a key role within modern hospital management systems for diagnostic purposes. Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed, all while upholding image quality. Moreover, an increasing number of hospitals are embracing cloud computing for patient data storage, necessitating meticulous scrutiny of server security and privacy protocols. Nevertheless, considering the widespread availability of multimedia tools, the preservation of digital data integrity surpasses the significance of compression alone. In response to this concern, we propose a secure storage and transmission solution for compressed medical image sequences, such as ultrasound images, utilizing a motion… More >

  • Open Access

    ARTICLE

    Restoration of the JPEG Maximum Lossy Compressed Face Images with Hourglass Block-GAN

    Jongwook Si1, Sungyoung Kim2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2893-2908, 2024, DOI:10.32604/cmc.2023.046081

    Abstract In the context of high compression rates applied to Joint Photographic Experts Group (JPEG) images through lossy compression techniques, image-blocking artifacts may manifest. This necessitates the restoration of the image to its original quality. The challenge lies in regenerating significantly compressed images into a state in which these become identifiable. Therefore, this study focuses on the restoration of JPEG images subjected to substantial degradation caused by maximum lossy compression using Generative Adversarial Networks (GAN). The generator in this network is based on the U-Net architecture. It features a new hourglass structure that preserves the characteristics of the deep layers. In… More >

  • Open Access

    REVIEW

    A Review on the Recent Trends of Image Steganography for VANET Applications

    Arshiya S. Ansari*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2865-2892, 2024, DOI:10.32604/cmc.2024.045908

    Abstract Image steganography is a technique of concealing confidential information within an image without dramatically changing its outside look. Whereas vehicular ad hoc networks (VANETs), which enable vehicles to communicate with one another and with roadside infrastructure to enhance safety and traffic flow provide a range of value-added services, as they are an essential component of modern smart transportation systems. VANETs steganography has been suggested by many authors for secure, reliable message transfer between terminal/hope to terminal/hope and also to secure it from attack for privacy protection. This paper aims to determine whether using steganography is possible to improve data security… More >

  • Open Access

    ARTICLE

    A Novel 6G Scalable Blockchain Clustering-Based Computer Vision Character Detection for Mobile Images

    Yuejie Li1,2,*, Shijun Li3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3041-3070, 2024, DOI:10.32604/cmc.2023.045741

    Abstract 6G is envisioned as the next generation of wireless communication technology, promising unprecedented data speeds, ultra-low Latency, and ubiquitous Connectivity. In tandem with these advancements, blockchain technology is leveraged to enhance computer vision applications’ security, trustworthiness, and transparency. With the widespread use of mobile devices equipped with cameras, the ability to capture and recognize Chinese characters in natural scenes has become increasingly important. Blockchain can facilitate privacy-preserving mechanisms in applications where privacy is paramount, such as facial recognition or personal healthcare monitoring. Users can control their visual data and grant or revoke access as needed. Recognizing Chinese characters from images… More >

  • Open Access

    ARTICLE

    A Cover-Independent Deep Image Hiding Method Based on Domain Attention Mechanism

    Nannan Wu1, Xianyi Chen1,*, James Msughter Adeke2, Junjie Zhao2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3001-3019, 2024, DOI:10.32604/cmc.2023.045311

    Abstract Recently, deep image-hiding techniques have attracted considerable attention in covert communication and high-capacity information hiding. However, these approaches have some limitations. For example, a cover image lacks self-adaptability, information leakage, or weak concealment. To address these issues, this study proposes a universal and adaptable image-hiding method. First, a domain attention mechanism is designed by combining the Atrous convolution, which makes better use of the relationship between the secret image domain and the cover image domain. Second, to improve perceived human similarity, perceptual loss is incorporated into the training process. The experimental results are promising, with the proposed method achieving an… More >

  • Open Access

    REVIEW

    A Systematic Literature Review of Machine Learning and Deep Learning Approaches for Spectral Image Classification in Agricultural Applications Using Aerial Photography

    Usman Khan1, Muhammad Khalid Khan1, Muhammad Ayub Latif1, Muhammad Naveed1,2,*, Muhammad Mansoor Alam2,3,4, Salman A. Khan1, Mazliham Mohd Su’ud2,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 2967-3000, 2024, DOI:10.32604/cmc.2024.045101

    Abstract Recently, there has been a notable surge of interest in scientific research regarding spectral images. The potential of these images to revolutionize the digital photography industry, like aerial photography through Unmanned Aerial Vehicles (UAVs), has captured considerable attention. One encouraging aspect is their combination with machine learning and deep learning algorithms, which have demonstrated remarkable outcomes in image classification. As a result of this powerful amalgamation, the adoption of spectral images has experienced exponential growth across various domains, with agriculture being one of the prominent beneficiaries. This paper presents an extensive survey encompassing multispectral and hyperspectral images, focusing on their… More >

  • Open Access

    ARTICLE

    Road Traffic Monitoring from Aerial Images Using Template Matching and Invariant Features

    Asifa Mehmood Qureshi1, Naif Al Mudawi2, Mohammed Alonazi3, Samia Allaoua Chelloug4, Jeongmin Park5,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3683-3701, 2024, DOI:10.32604/cmc.2024.043611

    Abstract Road traffic monitoring is an imperative topic widely discussed among researchers. Systems used to monitor traffic frequently rely on cameras mounted on bridges or roadsides. However, aerial images provide the flexibility to use mobile platforms to detect the location and motion of the vehicle over a larger area. To this end, different models have shown the ability to recognize and track vehicles. However, these methods are not mature enough to produce accurate results in complex road scenes. Therefore, this paper presents an algorithm that combines state-of-the-art techniques for identifying and tracking vehicles in conjunction with image bursts. The extracted frames… More >

  • Open Access

    ARTICLE

    A Real-Time Localization Algorithm for Unmanned Aerial Vehicle Based on Continuous Images Processing

    Peng Geng1,*, Annan Yang2, Yan Liu3

    Journal on Artificial Intelligence, Vol.6, pp. 43-52, 2024, DOI:10.32604/jai.2024.047642

    Abstract This article presents a real-time localization method for Unmanned Aerial Vehicles (UAVs) based on continuous image processing. The proposed method employs the Scale Invariant Feature Transform (SIFT) algorithm to identify key points in multi-scale space and generate descriptor vectors to match identical objects across multiple images. These corresponding points in the image provide pixel positions, which can be combined with transformation equations, allow for the calculation of the UAV’s actual ground position. Additionally, the physical coordinates of matching points in the image can be obtained, corresponding to the UAV’s physical coordinates. The method achieves real-time positioning and tracking during UAV… More >

Displaying 1-10 on page 1 of 1164. Per Page