Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    REVIEW

    The role of transcriptional factor brachyury in the development and repair of nucleus pulposus

    YINGHUI WU#, HONG ZHANG#, QIANG WANG, SUOYUAN LI, JUN SHEN*

    BIOCELL, Vol.46, No.6, pp. 1363-1364, 2022, DOI:10.32604/biocell.2022.018360 - 07 February 2022

    Abstract Transcription factor Brachyury, a protein containing 435 amino acids, has been widely investigated and reported in notochord differentiation and nucleus pulposus development. The crucial functions and underlying mechanisms by Brachyury are discussed in this paper, which suggests Brachyury can be developed into a potential novel target for the therapy of intervertebral disc degeneration. More >

  • Open Access

    VIEWPOINT

    Stem cells in intervertebral disc regeneration–more talk than action?

    PETRA KRAUS1,*, ANKITA SAMANTA1, SINA LUFKIN2, THOMAS LUFKIN1

    BIOCELL, Vol.46, No.4, pp. 893-898, 2022, DOI:10.32604/biocell.2022.018432 - 15 December 2021

    Abstract Pain and lifestyle changes are common consequences of intervertebral disc degeneration (IVDD) and affect a large part of the aging population. The stemness of cells is exploited in the field of regenerative medicine as key to treat degenerative diseases. Transplanted cells however often face delivery and survival challenges, especially in tissues with a naturally harsh microniche environment such as the intervertebral disc. Recent interest in the secretome of stem cells, especially cargo protected from microniche-related decay as frequently present in degenerating tissues, provides new means of rejuvenating ailing cells and tissues. Exosomes, a type of More >

  • Open Access

    ARTICLE

    An Automated Real-Time Face Mask Detection System Using Transfer Learning with Faster-RCNN in the Era of the COVID-19 Pandemic

    Maha Farouk S. Sabir1, Irfan Mehmood2,*, Wafaa Adnan Alsaggaf3, Enas Fawai Khairullah3, Samar Alhuraiji4, Ahmed S. Alghamdi5, Ahmed A. Abd El-Latif6

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 4151-4166, 2022, DOI:10.32604/cmc.2022.017865 - 07 December 2021

    Abstract Today, due to the pandemic of COVID-19 the entire world is facing a serious health crisis. According to the World Health Organization (WHO), people in public places should wear a face mask to control the rapid transmission of COVID-19. The governmental bodies of different countries imposed that wearing a face mask is compulsory in public places. Therefore, it is very difficult to manually monitor people in overcrowded areas. This research focuses on providing a solution to enforce one of the important preventative measures of COVID-19 in public places, by presenting an automated system that automatically… More >

  • Open Access

    ARTICLE

    Fingerprint Liveness Detection from Different Fingerprint Materials Using Convolutional Neural Network and Principal Component Analysis

    Chengsheng Yuan1,2,3, Xinting Li3, Q. M. Jonathan Wu3, Jin Li4,5, Xingming Sun1,2

    CMC-Computers, Materials & Continua, Vol.53, No.4, pp. 357-372, 2017, DOI:10.3970/cmc.2017.053.357

    Abstract Fingerprint-spoofing attack often occurs when imposters gain access illegally by using artificial fingerprints, which are made of common fingerprint materials, such as silicon, latex, etc. Thus, to protect our privacy, many fingerprint liveness detection methods are put forward to discriminate fake or true fingerprint. Current work on liveness detection for fingerprint images is focused on the construction of complex handcrafted features, but these methods normally destroy or lose spatial information between pixels. Different from existing methods, convolutional neural network (CNN) can generate high-level semantic representations by learning and concatenating low-level edge and shape features from… More >

  • Open Access

    ARTICLE

    Effect of Cartilage Endplate on Cell Based Disc Regeneration: A Finite Element Analysis

    Yongren Wu, Sarah Cisewski, Barton L. Sachs, Hai Yao∗,†,‡

    Molecular & Cellular Biomechanics, Vol.10, No.2, pp. 159-182, 2013, DOI:10.3970/mcb.2013.010.159

    Abstract This study examines the effects of cartilage endplate (CEP) calcification and the injection of intervertebral disc (IVD) cells on the nutrition distributions inside the human IVD under physiological loading conditions using multiphasic finite element modeling. The human disc was modeled as an inhomogeneous mixture consisting of a charged elastic solid, water, ions (Na+ and Cl), and nutrient solute(oxygen,glucose and lactate) phases. The effect of the endplate calcification was simulated by a reduction of the tissue porosity (i.e., water volume faction) from 0.60 to 0.48. The effect of cell injection was simulated by increasing the cell density… More >

Displaying 1-10 on page 1 of 5. Per Page