Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,608)
  • Open Access

    ARTICLE

    The Hydraulic Fracturing Optimization for Stacked Tight Gas Reservoirs Using Multilayers and Multiwells Fracturing Strategies

    Yuanyuan Yang1, Xian Shi1,2,*, Cheng Ji3, Yujie Yan3, Na An3, Teng Zhang4

    Energy Engineering, Vol.121, No.12, pp. 3667-3688, 2024, DOI:10.32604/ee.2024.056266 - 22 November 2024

    Abstract Based on a geology-engineering sweet spot evaluation, the high-quality reservoir zones and horizontal well landing points were determined. Subsequently, fracture propagation and production were simulated with a multilayer fracturing scenario. The optimal hydraulic fracturing strategy for the multilayer fracturing network was determined by introducing a vertical asymmetry factor. This strategy aimed to minimize stress shadowing effects in the vertical direction while maximizing the stimulated reservoir volume (SRV). The study found that the small vertical layer spacing of high-quality reservoirs and the presence of stress-masking layers (with a stress difference of approximately 3~8 MPa) indicate that… More > Graphic Abstract

    The Hydraulic Fracturing Optimization for Stacked Tight Gas Reservoirs Using Multilayers and Multiwells Fracturing Strategies

  • Open Access

    ARTICLE

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

    Zhaoqiang Wang1, Fuyin Ni2,*

    Energy Engineering, Vol.121, No.12, pp. 3779-3799, 2024, DOI:10.32604/ee.2024.055535 - 22 November 2024

    Abstract Under the partial shading conditions (PSC) of Photovoltaic (PV) modules in a PV hybrid system, the power output curve exhibits multiple peaks. This often causes traditional maximum power point tracking (MPPT) methods to fall into local optima and fail to find the global optimum. To address this issue, a composite MPPT algorithm is proposed. It combines the improved kepler optimization algorithm (IKOA) with the optimized variable-step perturb and observe (OIP&O). The update probabilities, planetary velocity and position step coefficients of IKOA are nonlinearly and adaptively optimized. This adaptation meets the varying needs of the initial… More > Graphic Abstract

    Maximum Power Point Tracking Based on Improved Kepler Optimization Algorithm and Optimized Perturb & Observe under Partial Shading Conditions

  • Open Access

    ARTICLE

    Modeling, Simulation, and Risk Analysis of Battery Energy Storage Systems in New Energy Grid Integration Scenarios

    Xiaohui Ye1,*, Fucheng Tan1, Xinli Song2, Hanyang Dai2, Xia Li2, Shixia Mu2, Shaohang Hao2

    Energy Engineering, Vol.121, No.12, pp. 3689-3710, 2024, DOI:10.32604/ee.2024.055200 - 22 November 2024

    Abstract Energy storage batteries can smooth the volatility of renewable energy sources. The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system (BESS). However, the current modeling of grid-connected BESS is overly simplistic, typically only considering state of charge (SOC) and power constraints. Detailed lithium (Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions. Additionally, there is a lack of real-time batteries risk assessment frameworks. To address these issues, in this… More >

  • Open Access

    ARTICLE

    Special Vehicle Target Detection and Tracking Based on Virtual Simulation Environment and YOLOv5-Block+DeepSort Algorithm

    Mingyuan Zhai1,2, Hanquan Zhang1, Le Wang1, Dong Xiao1,*, Zhengmin Gu3, Zhenni Li1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3241-3260, 2024, DOI:10.32604/cmc.2024.056241 - 18 November 2024

    Abstract In the process of dense vehicles traveling fast, there will be mutual occlusion between vehicles, which will lead to the problem of deterioration of the tracking effect of different vehicles, so this paper proposes a research method of virtual simulation video vehicle target tracking based on you only look once (YOLO)v5s and deep simple online and realtime tracking (DeepSort). Given that the DeepSort algorithm is currently the most effective tracking method, this paper merges the YOLOv5 algorithm with the DeepSort algorithm. Then it adds the efficient channel attention networks (ECA-Net) focusing mechanism at the back… More >

  • Open Access

    ARTICLE

    Fuzzy Control Optimization of Loading Paths for Hydroforming of Variable Diameter Tubes

    Yong Xu1,2, Xuewei Zhang1, Wenlong Xie2,*, Shihong Zhang2, Xinyue Huang3, Yaqiang Tian1, Liansheng Chen1

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2753-2768, 2024, DOI:10.32604/cmc.2024.055408 - 18 November 2024

    Abstract The design of the loading path is one of the important research contents of the tube hydroforming process. Optimization of loading paths using optimization algorithms has received attention due to the inefficiency of only finite element optimization. In this paper, the hydroforming process of 5A02 aluminum alloy variable diameter tube was as the research object. Fuzzy control was used to optimize the loading path, and the fuzzy rule base was established based on FEM. The minimum wall thickness and wall thickness reduction rate were determined as input membership functions, and the axial feeds variable value… More >

  • Open Access

    PROCEEDINGS

    Towards High-Fidelity and Efficient Computation for Diagnosis and Treatment of Cardiovascular Disease

    Lei Wang1,*, Blanca Rodriguez2, Xiaoyu Luo3, Charles Augarde4

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.013350

    Abstract Cardiovascular disease is the leading cause of death worldwide. Disease-specific software, like FFRct from HeartFlow, and high-fidelity computational models within a general-purpose software, like Living Heart Project within Abaqus, are essential to revolutionise diagnosis and treatment of cardiovascular disease for clinicians and design of medical devices for industries. This talk presents our past researches on computational modelling of tear propagation in the aortic dissection [1-2] and of electromechanical coupling in the human heart with the finite element method [3], and our current exploration on high-fidelity and efficient computation and software development for diagnosis and treatment More >

  • Open Access

    PROCEEDINGS

    A New Flow Regulation Strategy by Coupling Multiple Methods for High Efficiency Turbine with Wide Conditions

    Ziran Li1, Weihao Zhang2, Lei Qi1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.013344

    Abstract In the future, the wide speed and altitude range aviation engine will have features such as "wide range of high-bypass-ratio adjustment" and "wide range of high-pressure-ratio adjustment". Therefore, its turbine will work in a very wide range of operating conditions, with a large flow regulation range. Under conditions of high-rate flow regulation, existing flow control technologies can significantly reduce turbine efficiency. To support the performance and technical specifications of future engines, their low-pressure turbines need to maintain high operational efficiency within a flow regulation range and power output range that exceed those of current aircraft engines.
    More >

  • Open Access

    PROCEEDINGS

    Numerical Simulation of Slot-Die Coating for Lithium-Ion Battery Electrode and Investigation into Coating Characteristics

    Peng Wang1,*, Ningbo Li1, Ruolan Jiang1, Bing Dong1, Dongliang Sun1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012551

    Abstract Lithium-ion batteries, renowned for their lightweight design and voltage stability, have found widespread applications in portable electronic devices, stationary energy storage systems, and electric vehicles. Slurry coating stands out as a pivotal manufacturing process for lithium-ion battery electrodes. In particular, slot-die coating technology, known for its rapid coating speed, has seen extensive engineering adoption in recent years. Utilizing numerical simulations to study the slurry coating process for lithium-ion battery electrodes allows for a detailed analysis of the complex fluid dynamics involved, thereby playing a crucial role in improving coating uniformity and enhancing battery performance. This… More >

  • Open Access

    PROCEEDINGS

    Marangoni Convection Shifting, Heat Accumulation and Microstructure Evolution of Laser Directed Energy Deposition

    Donghua Dai1,2,*, Yanze Li1,2, Dongdong Gu1,2,*, Wentai Zhao1,2, Yuhang Long1,2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012500

    Abstract Laser Directed Energy Deposition (LDED) technology was employed to fabricate internal structures within the hollow interiors of rotating parts, such as tubes and cylinders. A three-dimensional transient multiphysics model for C276 material was developed, which anticipated the impact of angular velocity from tube rotation on various aspects. This model, validated by experiments, focused on the melt pool morphology, Marangoni convection, oriented crystal microevolution, and deposited material microhardness. It was found that at 150 ms deposition, the dimensions of the melt pool stabilized. With an increase in the Peclet number, heat transfer within the melt pool… More >

  • Open Access

    PROCEEDINGS

    Modelling and Simulation on Deformation Behaviour and Strengthening Mechanism of Multi-Principal Element Alloys

    Yang Chen1, Baobin Xie1, Weizheng Lu1, Jia Li1,*, Qihong Fang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-2, 2024, DOI:10.32604/icces.2024.011624

    Abstract In order to accurately predict and evaluate the mechanical properties of multi-principal element alloys (MPEAs), some new models and simulation methods need to be developed to solve the problems caused by its unique natural characteristics, such as severe lattice distortion. The existing models are based on the development of low concentration alloys, and cannot be well applied to MPEAs. Here, we develop i) the random field theory informed discrete dislocation dynamics simulations based on high-resolution transmission electron microscopy, to systematically clarify the role of heterogeneous lattice strain on the complex interactions between the dislocation loop… More >

Displaying 1-10 on page 1 of 1608. Per Page