Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Device-Independent Quantum Key Distribution Protocol Based on Hyper-Entanglement

    Yan Chang1, *, Shibin Zhang1, Lili Yan1, Xueyang Li1, Tian Cao1, Qirun Wang2

    CMC-Computers, Materials & Continua, Vol.65, No.1, pp. 879-896, 2020, DOI:10.32604/cmc.2020.010042 - 23 July 2020

    Abstract The secure key rate of quantum key distribution (QKD) is greatly reduced because of the untrusted devices. In this paper, to raise the secure key rate of QKD, a device-independent quantum key distribution (DIQKD) protocol is proposed based on hyper-entangled states and Bell inequalities. The security of the protocol is analyzed against the individual attack by an adversary only limited by the no-signaling condition. Based on the formalization of Clauser-Horne Shimony-Holt (CHSH) violation measurement on local correlation, the probability of a secure secret bit is obtained, which is produced by a pair of hyper-entangled particles. More >

Displaying 1-10 on page 1 of 1. Per Page