Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Experimental Study of Hydrogen Distribution in Natural Gas under Static Conditions

    Mengjie Wang1, Jingfa Li2,*, Bo Yu2, Nianrong Wang3, Xiaofeng Wang3, Tao Hu4

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.12, pp. 3055-3072, 2025, DOI:10.32604/fdmp.2025.071675 - 31 December 2025

    Abstract The adaptation of existing natural gas pipelines for hydrogen transportation has attracted increasing attention in recent years. Yet, whether hydrogen and natural gas stratify under static conditions remains a subject of debate, and experimental evidence is still limited. This study presents an experimental investigation of the concentration distribution of hydrogen–natural gas mixtures under static conditions. Hydrogen concentration was measured using a KTL-2000M-H hydrogen analyzer, with a measurement range of 0–30% (by volume), an accuracy of 1% full scale (FS), and a resolution of 0.01%. Experiments were conducted in a 300 cm riser, filled with uniformly… More >

  • Open Access

    ARTICLE

    Effects of Soil Properties on the Diffusion of Hydrogen-Blended Natural Gas from an Underground Pipe

    Shiyao Peng1, Hanwen Zhang1, Chong Chai1, Shilong Xue2, Xiaobin Zhang2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1099-1112, 2025, DOI:10.32604/fdmp.2025.060452 - 30 May 2025

    Abstract The diffusion of hydrogen-blended natural gas (HBNG) from buried pipelines in the event of a leak is typically influenced by soil properties, including porosity, particle size, temperature distribution, relative humidity, and the depth of the pipeline. This study models the soil as an isotropic porous medium and employs a CFD-based numerical framework to simulate gas propagation, accounting for the coupled effects of soil temperature and humidity. The model is rigorously validated against experimental data on natural gas diffusion in soil. It is then used to explore the impact of relevant parameters on the diffusion behavior… More >

  • Open Access

    PROCEEDINGS

    Leakage Diffusion and Monitor of Hydrogen-Blended Natural Gas Pipeline in Utility Tunnel

    Pengfei Duan1,*, Luling Li1, Jianhui Liu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012431

    Abstract The supply of hydrogen-blended natural gas to civil and industrial users can assist downstream firm to achieve carbon emission reduction, and ensure energy security as an alternative gas source. This application mode has been widely concerned by urban gas enterprises. This paper focuses on the leakage problem of hydrogen-blended pipelines in utility tunnel due to corrosion and other reasons. Using dimensional analysis method, a model experiment is designed to verify that the three-dimensional compressible fluid model coupled with transport equations can effectively simulate the concentration change of hydrogen-blended natural gas after leakage in the utility… More >

  • Open Access

    PROCEEDINGS

    Lifetime Prediction of Polyethylene Pipe Due to Aging Failure in Hydrogen-Blended Natural Gas Environment

    Dukui Zheng1, Jingfa Li1,*, Bo Yu1, Zhiqiang Huang1, Yindi Zhang1, Cuiwei Liu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011669

    Abstract In the low and medium pressure urban gas pipe network, transporting the hydrogen-blended natural gas through polyethylene pipe is an important means to realize the large-scale delivery and utilization of hydrogen-blended natural gas. However, due to the characteristics of polymer material, polyethylene pipes will experience aging phenomenon, which will lead to the deterioration of performance and eventually result in brittle damage and failure. Therefore, it is of great significance to analyze and predict the lifetime of polyethylene pipe due to the aging in the hydrogen-blended natural gas environment to ensure the safe transportation. In this… More >

Displaying 1-10 on page 1 of 4. Per Page