Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation

    Yuanjun Dai, Haonan Li, Baohua Li*

    Energy Engineering, Vol.121, No.6, pp. 1607-1636, 2024, DOI:10.32604/ee.2024.047255

    Abstract This paper addresses the micro wind-hydrogen coupled system, aiming to improve the power tracking capability of micro wind farms, the regulation capability of hydrogen storage systems, and to mitigate the volatility of wind power generation. A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction, the hydrogen storage state division interval, and the daily scheduled output of wind power generation. The control strategy maximizes the power tracking capability, the regulation capability of the hydrogen storage system, and the fluctuation of the joint output of the wind-hydrogen… More >

  • Open Access

    ARTICLE

    Modeling of Large-Scale Hydrogen Storage System Considering Capacity Attenuation and Analysis of Its Efficiency Characteristics

    Junhui Li1, Haotian Zhang1, Cuiping Li1,*, Xingxu Zhu1, Ruitong Liu2, Fangwei Duan2, Yongming Peng3

    Energy Engineering, Vol.121, No.2, pp. 291-313, 2024, DOI:10.32604/ee.2023.027593

    Abstract In the existing power system with a large-scale hydrogen storage system, there are problems such as low efficiency of electric-hydrogen-electricity conversion and single modeling of the hydrogen storage system. In order to improve the hydrogen utilization rate of hydrogen storage system in the process of participating in the power grid operation, and speed up the process of electric-hydrogen-electricity conversion. This article provides a detailed introduction to the mathematical and electrical models of various components of the hydrogen storage unit, and also establishes a charging and discharging efficiency model that considers the temperature and internal gas… More >

  • Open Access

    ARTICLE

    Effects of Hydrogen Storage System and Renewable Energy Sources for Optimal Bidding Strategy in Electricity Market

    Can Li*, Xiaode Zuo

    Energy Engineering, Vol.119, No.5, pp. 1879-1903, 2022, DOI:10.32604/ee.2022.020472

    Abstract This work suggested a novel model for obtaining optimum bidding/offering strategy to improve the benefits in case of big users. Aiming this regard, several electrical energy resources including: micro turbines, green power sources (wind turbine and photovoltaic system), power storage unit such as Hydrogen storage system with fuel cell, as well as mutual treaties are taken into account in offered model. Considering various models for uncertain parameters based on their natures such as power demand, electricity market tariffs, solar irradiation, temperature and wind speed is one of the contributions of the proposed model. Uncertainty of… More >

  • Open Access

    ABSTRACT

    Insights from ab initio studies of hydrogen storage systems

    Ralph H. Scheicher

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.3, pp. 93-94, 2011, DOI:10.3970/icces.2011.019.093

    Abstract The purpose of this talk is to provide an overview of the most recent theoretical studies undertaken by us in the field of hydrogen storage materials research. On selected examples, the application of our computational tool of choice, density functional theory, will be illustrated to show how ab initio calculations can be of use in the effort to reach a better understanding of hydrogen storage materials and to occasionally also guide the search for new promising approaches. Systems to be discussed include: Metal-organic frameworks, where we have studied hydrogen physisorption in three different types of… More >

Displaying 1-10 on page 1 of 4. Per Page