Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (22)
  • Open Access

    ARTICLE

    Comprehensive Multi-Criteria Assessment of GBH-IES Microgrid with Hydrogen Storage

    Xue Zhang1, Jie Chen2,*, Zhihui Zhang3, Dewei Zhang3, Yuejiao Ming3, Xinde Zhang3

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.069487 - 27 December 2025

    Abstract The integration of wind power and natural gas for hydrogen production forms a Green and Blue Hydrogen Integrated Energy System (GBH-IES), which is a promising cogeneration approach characterized by multi-energy complementarity, flexible dispatch, and efficient utilization. This system can meet the demands for electricity, heat, and hydrogen while demonstrating significant performance in energy supply, energy conversion, economy, and environment (4E). To evaluate the GBH-IES system effectively, a comprehensive performance evaluation index system was constructed from the 4E dimensions. The fuzzy DEMATEL method was used to quantify the causal relationships between indicators, establishing a scientific input-output… More > Graphic Abstract

    Comprehensive Multi-Criteria Assessment of GBH-IES Microgrid with Hydrogen Storage

  • Open Access

    ARTICLE

    Techno-Economic Analysis for Hydrogen Storage Integrated Grid Electric Vehicle Charging Bays: A Case Study in Kuching, Sarawak

    Jack Kiing Teck Wei1, Mohanad Taher Mohamed Sayed Roshdy1, Bryan Ho Liang Hui1, Jalal Tavalaei1, Hadi Nabipour Afrouzi2,*

    Energy Engineering, Vol.122, No.11, pp. 4755-4775, 2025, DOI:10.32604/ee.2025.069980 - 27 October 2025

    Abstract In this article, a hybrid energy storage system powered by renewable energy sources is suggested, which is connected to a grid-tied electric vehicle charging bay (EVCB) in Sarawak and is examined for its techno-economic effects. With a focus on three renewable energy sources, namely hydrokinetic power, solar power, and hydrogen fuel cells, the study seeks to minimize reliance on the electrical grid while meeting the growing demand from the growing electric vehicle (EV) infrastructure. A hybrid renewable energy storage system that combines solar power, hydrogen fuel cells, hydrokinetic power, and the grid was simulated and… More >

  • Open Access

    PROCEEDINGS

    Comparative Study on Thermodynamic Models of Liquid Hydrogen Storage Tanks

    Yanfeng Li1, Dongxu Han1,*, Jinhui Lin2, Qingwei Zhai3, Xiaohua Wu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.2, pp. 1-1, 2025, DOI:10.32604/icces.2025.011547

    Abstract Liquid hydrogen (LH2), with its high volumetric energy density and high purity, has become a promising choice for hydrogen storage. As the demand for hydrogen as a clean energy source continues to grow, the importance of liquid hydrogen in energy storage is becoming increasingly significant. However, the safe operation and storage of liquid hydrogen face several challenges, particularly the self-pressurization process within storage tanks. During storage, heat ingress into the tank causes the evaporation of liquid hydrogen, leading to a continuous rise in vapor pressure, resulting in self-pressurization. Accurately predicting this process is crucial for… More >

  • Open Access

    PROCEEDINGS

    Techno-Economic Analysis of Offshore Hydrogen Energy Storage and Transportation Based on Levelized Cost

    Ziming Hu1, Jingfa Li1,*, Chaoyang Fan1, Jiale Xiao1, Huijie Huang2, Bo Yu1, Baocheng Shi1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.010823

    Abstract Hydrogen production from offshore wind power is an effective means to address the challenges of wind power grid integration and has emerged as a focal point in the development and research of offshore wind energy in recent years. However, the current state of hydrogen storage and transportation technologies for offshore applications lacks comprehensive economic analysis. This study aims to provide a thorough economic evaluation of these technologies by considering both fixed investment costs and operational and maintenance costs. A levelized cost model is employed to analyze four offshore hydrogen storage and transportation schemes: gas hydrogen… More >

  • Open Access

    ARTICLE

    Derivative Free and Dispatch Algorithm-Based Optimization and Power System Assessment of a Biomass-PV-Hydrogen Storage-Grid Hybrid Renewable Microgrid for Agricultural Applications

    Md. Fatin Ishraque1, Akhlaqur Rahman2, Kamil Ahmad1, Sk. A. Shezan3,*, Md. Meheraf Hossain1, Sheikh Rashel Al Ahmed1, Md. Iasir Arafat1, Noor E Nahid Bintu4

    Energy Engineering, Vol.122, No.8, pp. 3347-3375, 2025, DOI:10.32604/ee.2025.067492 - 24 July 2025

    Abstract In this research work, the localized generation from renewable resources and the distribution of energy to agricultural loads, which is a local microgrid concept, have been considered, and its feasibility has been assessed. Two dispatch algorithms, named Cycle Charging and Load Following, are implemented to find the optimal solution (i.e., net cost, operation cost, carbon emission. energy cost, component sizing, etc.) of the hybrid system. The microgrid is also modeled in the DIgSILENT Power Factory platform, and the respective power system responses are then evaluated. The development of dispatch algorithms specifically tailored for agricultural applications… More >

  • Open Access

    ARTICLE

    Application of a Regional Data Set of the Housing Sector for Hydrogen Storage-Supported Energy System Planning

    Steffen Schedler1,*, Michael Bareev-Rudy1, Stefanie Meilinger2, Tanja Clees1,3

    Energy Engineering, Vol.122, No.5, pp. 1755-1770, 2025, DOI:10.32604/ee.2025.061962 - 25 April 2025

    Abstract Germany aims to achieve a national climate-neutral energy system by 2045. The residential sector still accounts for 29% of end energy consumption, with 74% attributed to the direct use of fossil fuels for heating and hot water. In order to reduce fossil energy use in the household sector, great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity and heat. One possibility is to convert parts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of… More >

  • Open Access

    PROCEEDINGS

    Optimization of Thermal Management Structure of Multilayer Concentric Circle Metal Hydride-Phase Change Material Reactor

    Yihan Liao1, Jingfa Li2,*, Yi Wang1,*, Bo Yu2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011032

    Abstract Metal Hydride (MH) is a promising hydrogen storage technique owing to its safety, availability, and high volumetric storage density. MH hydrogen storage reactor is the core component of MH hydrogen storage technology. However, the thermal effect of MH hydrogen storage reactor in the process of hydrogenation/dehydrogenation is significant, which requires an efficient heat management system for the reactor. Phase change materials (PCM) can be applied to MH hydrogen storage reactor, and have the advantages of simple structure. In this paper, representative PCM thermal management methods were summarized, and the distribution structure of the existing multi-layer… More >

  • Open Access

    PROCEEDINGS

    Numerical Study on the Sloshing and Thermodynamic Characteristics of Liquid Hydrogen Storage Tank in Hydrogen-Powered Aircraft

    Zhibo Chen1, Jingfa Li1,*, Bo Yu1, Jianli Li1, Wei Zhang2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.011004

    Abstract Using liquid hydrogen as fuel is helpful to the aviation industry to achieve the goal of carbon peak and carbon neutrality. However, the liquid hydrogen storage tank will inevitably slosh during the use inhydrogen-powered aircraft, thus it is necessary to study the thermodynamic characteristics of liquid hydrogen storage tank during the sloshing process. In this paper, the thermodynamic behavior of liquid hydrogen storage tank under external excitation is studied by using Volume of Fluid(VOF) model and Lee model through numerical simulation methods. The changes of pressure and temperature in the process of tank sloshing under… More >

  • Open Access

    ARTICLE

    Hydroelectric and Hydrogen Storage Systems for Electric Energy Produced from Renewable Energy Sources

    Saif Serag1,*, Adil Echchelh2, Biagio Morrone1

    Energy Engineering, Vol.121, No.10, pp. 2719-2741, 2024, DOI:10.32604/ee.2024.054424 - 11 September 2024

    Abstract Renewable energy sources are essential for mitigating the greenhouse effect and supplying energy to resource-scarce regions. However, their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs. This paper investigates renewable and clean storage systems, specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen, both of which are highly efficient and promising for future energy production and storage. The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating… More > Graphic Abstract

    Hydroelectric and Hydrogen Storage Systems for Electric Energy Produced from Renewable Energy Sources

  • Open Access

    ARTICLE

    Research on the Control Strategy of Micro Wind-Hydrogen Coupled System Based on Wind Power Prediction and Hydrogen Storage System Charging/Discharging Regulation

    Yuanjun Dai, Haonan Li, Baohua Li*

    Energy Engineering, Vol.121, No.6, pp. 1607-1636, 2024, DOI:10.32604/ee.2024.047255 - 21 May 2024

    Abstract This paper addresses the micro wind-hydrogen coupled system, aiming to improve the power tracking capability of micro wind farms, the regulation capability of hydrogen storage systems, and to mitigate the volatility of wind power generation. A predictive control strategy for the micro wind-hydrogen coupled system is proposed based on the ultra-short-term wind power prediction, the hydrogen storage state division interval, and the daily scheduled output of wind power generation. The control strategy maximizes the power tracking capability, the regulation capability of the hydrogen storage system, and the fluctuation of the joint output of the wind-hydrogen… More >

Displaying 1-10 on page 1 of 22. Per Page