Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

    Xiaoyu Chen*

    Journal of Renewable Materials, Vol.12, No.4, pp. 815-826, 2024, DOI:10.32604/jrm.2024.048470

    Abstract A novel core-shell hydrogel bead was fabricated for effective removal of methylene blue dye from aqueous solutions. The core, made of sodium alginate-g-polyacrylamide and attapulgite nanofibers, was cross-linked by Calcium ions (Ca). The shell, composed of a chitosan/activated carbon mixture, was then coated onto the core. Fourier transform infrared spectroscopy confirmed the grafting polymerization of acrylamide onto sodium alginate. Scanning electron microscopy images showed the core-shell structure. The core exhibited a high water uptake ratio, facilitating the diffusion of methylene blue into the core. During the diffusion process, the methylene blue was first adsorbed by More > Graphic Abstract

    Fabrication of Core-Shell Hydrogel Bead Based on Sodium Alginate and Chitosan for Methylene Blue Adsorption

  • Open Access

    ARTICLE

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

    Susi Susi1,2,*, Makhmudun Ainuri3,*, Wagiman Wagiman3, Mohammad Affan Fajar Falah3

    Journal of Renewable Materials, Vol.12, No.3, pp. 513-537, 2024, DOI:10.32604/jrm.2024.045586

    Abstract Microcrystalline cellulose (MCC) is one of the cellulose derivatives produced as a result of the depolymerization of a part of cellulose to achieve high crystallinity. When implemented in other polymers, high crystallinity correlates with greater strength and stiffnes, but it can reduce the water-holding capacity. The acid concentration and hydrolysis time will affect the acquisition of crystallinity and water absorption capacity, both of which have significance as properties of hydrogel filler. The study aimed to evaluate the properties and select the MCC generated from varying the proportion of hydrochloric acid (HCl) and the appropriate hydrolysis… More > Graphic Abstract

    Characterization and Selection of Microcrystalline Cellulose from Oil Palm Empty Fruit Bunches for Strengthening Hydrogel Films

  • Open Access

    ARTICLE

    Functionalized 2-(hydroxyethyl) methacrylate (HEMA)- co-acrylamide (AAm) hydrogels: Kinetic and Isotherm Modelling Analysis on the Removal of Cu(II) Ions

    AYÇA BAL ÖZTÜRK1,2,*, ZEHRA ÖZBAŞ3, BENGİ ÖZKAHRAMAN4, SERKAN EMİK5

    Journal of Polymer Materials, Vol.36, No.2, pp. 161-173, 2019, DOI:10.32381/JPM.2019.36.02.5

    Abstract A functionalized hydrogel composed of 2-(hydroxyethyl) methacrylate (HEMA) and acrylamide (AAm) was synthesized by amination and saponification reactions, respectively, and its functionality was examined for the elimination of copper(II) ions. The maximum adsorption capacity for copper(II) ions was 0.617 mmol g-1 before saponification, whereas it was 1.2225 mmol g-1 after saponification. The adsorption data was analyzed with pseudo-first-order (r2 =0.8867), intra-particle diffusion (r2 =0.9453), Elovich (r2=0.9489) and pseudo-secondorder(r2 =0.9999) kinetic models. Based on the adsorption equilibrium experimental data Freundlich(r2 =0.9964), Langmuir(r2=0.998) and Dubinin–Radushkevich (D-R) (r2 =0.9960) adsorption isotherms provided good fits for all of experimental results. Finally, the datas of More >

  • Open Access

    ARTICLE

    Swelling dynamics of Poly (N, N- Dimethylacrylamide - co- Crotonic acid) Hydrogel and Evaluation of its Potential for Controlled Release of Fertilizers

    FATMA LOUZRI, SADJIA BENNOUR

    Journal of Polymer Materials, Vol.37, No.1-2, pp. 55-76, 2020, DOI:10.32381/JPM.2020.37.1-2.5

    Abstract Poly(N,N-dimethymethylacrylamide -co-crotonic acid) (P(DMA-CAx)) hydrogels were prepared by free radical polymerization, using N,N- methylenebisacrylamide (NMBA) as cross-linking agent. The synthesized hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The effects of comonomer composition and pH of the medium on the swelling behavior of hydrogels were investigated. The obtained results showed that the swelling capabilities of hydrogels increased as crotonic acid content and pH increased. In order to evaluate the controlled release potential of the polymeric matrix, it was loaded with potassium nitrate and ammonium nitrate as fertilizers and the release More >

  • Open Access

    ARTICLE

    Genipin Cross-linked Boron Doped Hydrogels: Evaluation of Biological Activities

    ELIF ANT BURSALI1,*, DILER ABACI1, MURAT KIZIL2, MURUVVET YURDAKOC1

    Journal of Polymer Materials, Vol.38, No.3-4, pp. 231-245, 2021, DOI:10.32381/JPM.2021.38.3-4.5

    Abstract Genipin cross-linked/boron doped starch/polyvinily alcohol (PVA) based hydrogel (SH-GNP-B) was synthesized as a new material having antimicrobial and antioxidant activity. The prepared hydrogel was characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscope (SEM) methods and evaluated for in vitro antimicrobial activities against selected organisms by disc diffusion tests. The antioxidant activity of the prepared hydrogels was evaluated using 2,2-diphenyl-1- picrylhydrazyl radical scavenging assays. Swelling behavior of the hydrogel was also investigated. The synthesized hydrogel was thermally stable and showed pH independent swelling tendency. SH-GNP-B hydrogel More >

  • Open Access

    ARTICLE

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

    Hu Shi, Wei Cai, Xin Wang*, Lei Song, Yuan Hu*

    Journal of Renewable Materials, Vol.11, No.12, pp. 3991-4006, 2023, DOI:10.32604/jrm.2023.029888

    Abstract To solve the fire accidents caused by coal combustion, this work prepared four hybrid hydrogel materials using bio-based polymers, flame retardants, and inorganic materials. Compared to pure water and 3.5 wt% MgCl2 solution, the as-prepared hydrogel presents good fire prevention performance. In addition, it is found that CO and CO2 are not produced by coal when the pyrolysis temperature is lower than 200°C. During low-temperature pyrolysis, CO is more likely to be produced than CO2, indicating inadequate pyrolysis behavior. At the same time, the addition of fire-preventing hydrogel can not only decrease the maximum CO2 concentration before… More > Graphic Abstract

    Effect of Bio-Based Organic‒Inorganic Hybrid Hydrogels on Fire Prevention of Spontaneous Combustion of Coals

  • Open Access

    PROCEEDINGS

    Hydrogels with Brain Tissue-Like Mechanical Properties in Complex Environments

    Jingyu Wang1,#, Yongrou Zhang4,#, Zuyue Lei1, Junqi Wang1, Yangming Zhao1, Taolin Sun3,*, Zhenyu Jiang1, Licheng Zhou1, Zejia Liu1, Yiping Liu1, Bao Yang1, Liqun Tang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2022.08829

    Abstract In surgical training applications and experimental research, brain tissues immersed in cerebrospinal fluid often involve very complex deformation and strain rate effects, which affects their reliability and stability. Thus, it is indispensable to develop a high-fidelity human brain tissue simulant material as a physical surrogate model to understand their mechanical behavior, such as traumatic brain injury (TBI). However, the reported simulant materials have not yet been able to compare and satisfy the above two mechanical properties. Here, we developed a novel composite hydrogel with brain tissue-like mechanical properties and investigated their mechanical behavior in a… More >

  • Open Access

    PROCEEDINGS

    Experimental Investigation on Pure-Shear Ratcheting Behavior of Double-Network Tough Hydrogels

    Xuelian Zhang1, Junjie Liu1,*, Jian Li2, Zhihong Liang1, Han Jiang1, Guozheng Kang1, Qianhua Kan1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010142

    Abstract The last decades have witnessed the real and huge potential applications of hydrogels in various areas, including biomedicine, soft robotics, and flexible electronics. The fatigue of hydrogels challenges their reliability and longevity in service, but the related works are not sufficient. In this work, stress-controlled cyclic fatigue tests of a double-network tough hydrogel, consisting of polyacrylamide and alginate polymer networks, under pure shear deformation are investigated. The effects of peak stress, loading rate, peak stress holding time, and environmental relative humidity on the fatigue of the double-network tough hydrogel are considered. The results show that… More >

  • Open Access

    ARTICLE

    Preparation of Peanut Shell Cellulose Double-Network Hydrogel and Its Adsorption Capacity for Methylene Blue

    Yalin Li1,*, Lei Liu1, Wenbao Huang1, Junpu Xie2, Zhaoxia Song1, Shuna Guo1, Enci Wang1

    Journal of Renewable Materials, Vol.11, No.7, pp. 3001-3023, 2023, DOI:10.32604/jrm.2023.026604

    Abstract To achieve optimal recovery and value-added utilisation of cellulose in peanut shells, the cellulose in peanut shells was first extracted using the sodium hydroxide-sodium chlorite method. Then, cellulose hydrogel was prepared by graft copolymerisation using N, N’-methylenebisacrylamide as the cross-linking agent, sodium persulfate as the initiator, and acrylic acid as the monomer. Orthogonal optimisation experiments were designed to obtain optimal process parameters for hydrogel preparation with the cellulose dosage of 0.40 g, initiator dosage of 0.20 g, polymerisation temperature of 70°C, cross-linking agent of 0.25 g, and monomer dosage of 3.0 mL. The effect of initiator… More > Graphic Abstract

    Preparation of Peanut Shell Cellulose Double-Network Hydrogel and Its Adsorption Capacity for Methylene Blue

  • Open Access

    ARTICLE

    Fabricating Cationic Lignin Hydrogels for Dye Adsorption

    Chao Wang, Xuezhen Feng, Wanbing Li, Shibin Shang*, Haibo Zhang*

    Journal of Renewable Materials, Vol.11, No.4, pp. 1793-1805, 2023, DOI:10.32604/jrm.2023.024521

    Abstract Due to the low content of adsorption-active groups in lignin, its application in the field of adsorption is limited. Herein, we first prepared cationic kraft lignin acrylate, from which a cationic lignin (CKLA) hydrogel was further prepared by cationic kraft lignin acrylate, acrylamide, and N, N’-methylenebisacrylamide. The morphology, compression properties and swelling properties of CKLA hydrogels were investigated. The prepared CKLA hydrogel was applied as an adsorbent for Congo red. The effect of CKLA hydrogel dosages, initial concentration of Congo red, and pH on adsorption efficiency was investigated. The maximum Congo red removal efficiency was More >

Displaying 1-10 on page 1 of 41. Per Page