Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Multi-Target Track Initiation in Heavy Clutter

    Li Xu1,2,*, Ruzhen Lou1, Chuanbin Zhang1, Bo Lang3, Weiyue Ding4

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 4489-4507, 2022, DOI:10.32604/cmc.2022.027400 - 21 April 2022

    Abstract In the heavy clutter environment, the information capacity is large, the relationships among information are complicated, and track initiation often has a high false alarm rate or missing alarm rate. Obviously, it is a difficult task to get a high-quality track initiation in the limited measurement cycles. This paper studies the multi-target track initiation in heavy clutter. At first, a relaxed logic-based clutter filter algorithm is presented. In the algorithm, the raw measurement is filtered by using the relaxed logic method. We not only design a kind of incremental and adaptive filtering gate, but also… More >

  • Open Access

    ARTICLE

    Contactless Rail Profile Measurement and Rail Fault Diagnosis Approach Using Featured Pixel Counting

    Gulsah Karaduman*, Mehmet Karakose, Ilhan Aydin, Erhan Akin

    Intelligent Automation & Soft Computing, Vol.26, No.3, pp. 455-463, 2020, DOI:10.32604/iasc.2020.013922

    Abstract The use of railways has continually increased with high-speed trains. The increased speed and usage wear on the rails poses a serious problem. In recent years, to detect wear and cracks in the rails, image-based detection methods have been developed. In this paper, wears on the surface of railheads are detected by contactless image processing and image analysis techniques. The shadow removal algorithm with a minimal entropy method is implemented onto the noise-free images to eliminate the light variations that can occur on the rail. The Hough transform is applied on the noise and shadow More >

  • Open Access

    ARTICLE

    An Efficient Bar Code Image Recognition Algorithm for Sorting System

    Desheng Zheng1, *, Ziyong Ran1, Zhifeng Liu1, Liang Li2, Lulu Tian3

    CMC-Computers, Materials & Continua, Vol.64, No.3, pp. 1885-1895, 2020, DOI:10.32604/cmc.2020.010070 - 30 June 2020

    Abstract In the sorting system of the production line, the object movement, fixed angle of view, light intensity and other reasons lead to obscure blurred images. It results in bar code recognition rate being low and real time being poor. Aiming at the above problems, a progressive bar code compressed recognition algorithm is proposed. First, assuming that the source image is not tilted, use the direct recognition method to quickly identify the compressed source image. Failure indicates that the compression ratio is improper or the image is skewed. Then, the source image is enhanced to identify More >

  • Open Access

    ARTICLE

    Applications of the Phase-Coded Generalized Hough Transform to Feature Detection, Analysis, and Segmentation of Digital Microstructures

    Stephen R. Niezgoda1, Surya R. Kalidindi1,2

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 79-98, 2009, DOI:10.3970/cmc.2009.014.079

    Abstract The generalized Hough transform is a common technique for feature detection in image processing. In this paper, we develop a size invariant Hough framework for the detection of arbitrary shapes in three dimensional digital microstructure datasets. The Hough transform is efficiently implemented via kernel convolution with complex Hough filters, where shape is captured in the magnitude of the filter and scale in the complex phase. In this paper, we further generalize the concept of a Hough filter by encoding other parameters of interest (e.g. orientation of plate or fiber constituents) in the complex phase, broadening More >

Displaying 1-10 on page 1 of 4. Per Page