Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (57)
  • Open Access

    ARTICLE

    Numerical Analysis of Ice Accretion under Varying Conditions in the Pantograph Region of High-Speed Trains

    Xiulong Yao1, Mengge Yu1,*, Jiali Liu2, Qian Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.11, pp. 2795-2814, 2025, DOI:10.32604/fdmp.2025.072708 - 01 December 2025

    Abstract High-speed trains operating in freezing rain are highly susceptible to severe ice accretion in the pantograph region, which compromises both power transmission efficiency and dynamic performance. To elucidate the underlying mechanisms of this phenomenon, an Euler–Euler multiphase flow model was employed to simulate droplet impingement and collection on the pantograph surface, while a glaze-ice formation model incorporating wall film dynamics was used to capture the subsequent growth of ice. The effects of key parameters—including liquid water content, ambient temperature, train velocity, and droplet diameter—on the amount and morphology of ice were systematically investigated. The results More >

  • Open Access

    ARTICLE

    Automatic Potential Safety Hazard Detection for High-Speed Railroad Surrounding Environment Using Lightweight Hybrid Dual Tasks Architecture

    Zheda Zhao, Tao Xu, Tong Yang, Yunpeng Wu*, Fengxiang Guo*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1457-1472, 2025, DOI:10.32604/sdhm.2025.069611 - 17 November 2025

    Abstract Utilizing unmanned aerial vehicle (UAV) photography to timely detect and evaluate potential safety hazards (PSHs) around high-speed rail has great potential to complement and reform the existing manual inspections by providing better overhead views and mitigating safety issues. However, UAV inspections based on manual interpretation, which heavily rely on the experience, attention, and judgment of human inspectors, still inevitably suffer from subjectivity and inaccuracy. To address this issue, this study proposes a lightweight hybrid learning algorithm named HDTA (hybrid dual tasks architecture) to automatically and efficiently detect the PSHs of UAV imagery. First, this HDTA… More >

  • Open Access

    ARTICLE

    Performance Boundaries of Air- and Ground-Coupled GPR for Void Detection in Multilayer Reinforced HSR Tunnel Linings: Simulation and Field Validation

    Yang Lei1,*, Bo Jiang1, Yucai Zhao2, Gaofeng Fu3, Falin Qi1, Tian Tian1, Qiankuan Feng1, Qiming Qu1

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1657-1679, 2025, DOI:10.32604/sdhm.2025.069415 - 17 November 2025

    Abstract Detecting internal defects, particularly voids behind linings, is critical for ensuring the structural integrity of aging high-speed rail (HSR) tunnel networks. While ground-penetrating radar (GPR) is widely employed, systematic quantification of performance boundaries for air-coupled (A-CGPR) and ground-coupled (G-CGPR) systems within the complex electromagnetic environment of multilayer reinforced HSR tunnels remains limited. This study establishes physics-based quantitative performance limits for A-CGPR and G-CGPR through rigorously validated GPRMax finite-difference time-domain (FDTD) simulations and comprehensive field validation over a 300 m operational HSR tunnel section. Key performance metrics were quantified as functions of: (a) detection distance (A-CGPR:… More >

  • Open Access

    ARTICLE

    Six-Degree-of-Freedom Motion Analysis of High-Speed Craft Navigating through Variable Marine Environments

    Xiaoyang Wu1, Wenchao Han2, Min Kuang2,*, Xinqi Wang2, Wenhao Xie2

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.9, pp. 2201-2223, 2025, DOI:10.32604/fdmp.2025.067081 - 30 September 2025

    Abstract The dynamic behavior of high-speed craft navigating through variable sea states plays a pivotal role in ensuring maritime safety. However, many existing simulation approaches rely on linear or overly simplified representations of the marine environment, thereby limiting the fidelity of motion predictions. This study explores the motion characteristics of a 4.5-t high-speed vessel by conducting fully coupled numerical simulations using the STAR-CCM+ software. The analysis considers both calm and varying sea conditions, incorporating fluctuations in wave height, wavelength, and wind speed to reflect more realistic operating scenarios. Simulation results reveal that the vessel’s hydrodynamic response… More >

  • Open Access

    ARTICLE

    Effect of Streamline Length on Aerodynamic Performance of 600 km/h Maglev Trains

    Yan Li1, Bailong Sun2, Tian Li2,*, Weihua Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1957-1970, 2025, DOI:10.32604/cmes.2025.069159 - 31 August 2025

    Abstract High-speed maglev trains represent a key direction for the future development of rail transportation. As operating speeds increase, they face increasingly severe aerodynamic challenges. The streamlined aerodynamic shape of a maglev train is a critical factor influencing its aerodynamic performance, and optimizing its length plays a significant role in improving the overall aerodynamic characteristics of the train. In this study, a numerical simulation model of a high-speed maglev train was established based on computational fluid dynamics (CFD) to investigate the effects of streamline length on the aerodynamic performance of the train operating on an open… More >

  • Open Access

    ARTICLE

    CFD-Based Optimization of Aerodynamic Noise in High-Speed Hair Dryer Flow Channels

    Ya Li1,*, Min Deng2, Shanyi Hao3, Yucong Lin1, Yu Lu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.7, pp. 1611-1622, 2025, DOI:10.32604/fdmp.2025.067497 - 31 July 2025

    Abstract The noise generated by high-speed hair dryers significantly affects user experience, with aerodynamic design playing a crucial role in controlling sound emissions. This study investigates the aerodynamic noise characteristics of a commercial high-speed hair dryer through Computational Fluid Dynamics (CFD) analysis. The velocity field, streamline patterns, and vector distribution within the primary flow path and internal cavity were systematically examined. Results indicate that strong interactions between the wake flow generated by the guide vanes and the straight baffle in the rear flow path induce vortex structures near the outlet, which are primarily responsible for high-frequency More >

  • Open Access

    ARTICLE

    The Influence of an Imposed Jet and Front and Rear Wall Modification on Aerodynamic Noise in High-Speed Train Cavities

    Yangyang Cao, Jiye Zhang*, Jiawei Shi, Yao Zhang

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.5, pp. 1079-1098, 2025, DOI:10.32604/fdmp.2025.060429 - 30 May 2025

    Abstract The pantograph area is a critical source of aerodynamic noise in high-speed trains, generating noise both directly and through its cavity, a factor that warrants considerable attention. One effective method for reducing aerodynamic noise within the pantograph cavity involves the introduction of a jet at the leading edge of the cavity. This study investigates the mechanisms driving cavity aerodynamic noise under varying jet velocities, using Improved Delayed Detached Eddy Simulation (IDDES) and Ffowcs Williams-Hawkings (FW-H) equations. The numerical simulations reveal that an increase in jet velocity results in a higher elevation of the shear layer… More >

  • Open Access

    ARTICLE

    Rolling Bearing Fault Diagnosis Based on Cross-Attention Fusion WDCNN and BILSTM

    Yingyong Zou*, Xingkui Zhang, Tao Liu, Yu Zhang, Long Li, Wenzhuo Zhao

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4699-4723, 2025, DOI:10.32604/cmc.2025.062625 - 19 May 2025

    Abstract High-speed train engine rolling bearings play a crucial role in maintaining engine health and minimizing operational losses during train operation. To solve the problems of low accuracy of the diagnostic model and unstable model due to the influence of noise during fault detection, a rolling bearing fault diagnosis model based on cross-attention fusion of WDCNN and BILSTM is proposed. The first layer of the wide convolutional kernel deep convolutional neural network (WDCNN) is used to extract the local features of the signal and suppress the high-frequency noise. A Bidirectional Long Short-Term Memory Network (BILSTM) is… More >

  • Open Access

    ARTICLE

    Quantitative Effects of Velocity and Residual Pressure Level on Aerodynamic Noise of Ultra-High-Speed Maglev Trains

    Lanxi Zhang1, Yuming Peng1, Yudong Wu2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.21, No.1, pp. 205-220, 2025, DOI:10.32604/fdmp.2024.056516 - 24 January 2025

    Abstract The challenge of aerodynamic noise is a key obstacle in the advancement of low-pressure tube ultra-high-speed maglev transportation, demanding urgent resolution. This study utilizes a broadband noise source model to perform a quantitative analysis of the aerodynamic noise produced by ultra-high-speed maglev trains operating in low-pressure environments. Initially, an external flow field calculation model for the ultra-high-speed maglev train is presented. Subsequently, numerical simulations based on the broadband noise source model are used to examine the noise characteristics. The impact of the train speed and pressure level on noise generation is investigated accordingly. Subsequently, a… More >

  • Open Access

    ARTICLE

    A Novel Model for Describing Rail Weld Irregularities and Predicting Wheel-Rail Forces Using a Machine Learning Approach

    Linlin Sun1,2, Zihui Wang3, Shukun Cui1,2, Ziquan Yan1,2,*, Weiping Hu3, Qingchun Meng3

    CMES-Computer Modeling in Engineering & Sciences, Vol.142, No.1, pp. 555-577, 2025, DOI:10.32604/cmes.2024.056023 - 17 December 2024

    Abstract Rail weld irregularities are one of the primary excitation sources for vehicle-track interaction dynamics in modern high-speed railways. They can cause significant wheel-rail dynamic interactions, leading to wheel-rail noise, component damage, and deterioration. Few researchers have employed the vehicle-track interaction dynamic model to study the dynamic interactions between wheel and rail induced by rail weld geometry irregularities. However, the cosine wave model used to simulate rail weld irregularities mainly focuses on the maximum value and neglects the geometric shape. In this study, novel theoretical models were developed for three categories of rail weld irregularities, based… More >

Displaying 1-10 on page 1 of 57. Per Page