Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Influence of Thermophoresis and Brownian Motion of Nanoparticles on Radiative Chemically-Reacting MHD Hiemenz Flow over a Nonlinear Stretching Sheet with Heat Generation

    S. Mohammed Ibrahim1, P. Vijaya Kumar2, G. Lorenzini3,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.4, pp. 855-868, 2023, DOI:10.32604/fdmp.2022.019796 - 02 November 2022

    Abstract In this study, a radiative MHD stagnation point flow over a nonlinear stretching sheet incorporating thermophoresis and Brownian motion is considered. Using a similarity method to reshape the underlying Partial differential equations into a set of ordinary differential equations (ODEs), the implications of heat generation, and chemical reaction on the flow field are described in detail. Moreover a Homotopy analysis method (HAM) is used to interpret the related mechanisms. It is found that an increase in the magnetic and velocity exponent parameters can damp the fluid velocity, while thermophoresis and Brownian motion promote specific thermal More >

  • Open Access

    ARTICLE

    HOMOTOPY ANALYSIS FOR MHD HIEMENZ FLOW IN A POROUS MEDIUM WITH THERMAL RADIATION, VELOCITY AND THERMAL SLIPS EFFECTS

    Nasreen Bano∗,† , B. B. Singh, S. R. Sayyed

    Frontiers in Heat and Mass Transfer, Vol.10, pp. 1-9, 2018, DOI:10.5098/hmt.10.14

    Abstract The present study deals with the two dimensional steady laminar forced MHD Hiemenz flow past a flat plate in a porous medium. The effects of thermal radiation and partial slips on the flow field have been investigated under the variable wall temperature condition of the plate. The governing equations have been transformed into a set of coupled non-linear ordinary differential equations (ODEs) by using suitable similarity transformations. These equations have been solved analytically by using homotopy analysis method (HAM). The effects of Prandtl number, suction/blowing parameter, permeability parameter, velocity slip parameter, radiation parameter, magnetic parameter, More >

Displaying 1-10 on page 1 of 2. Per Page