Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Multilevel Hierarchical Parallel Algorithm for Large-Scale Finite Element Modal Analysis

    Gaoyuan Yu1, Yunfeng Lou2, Hang Dong3, Junjie Li1, Xianlong Jin1,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2795-2816, 2023, DOI:10.32604/cmc.2023.037375 - 08 October 2023

    Abstract The strict and high-standard requirements for the safety and stability of major engineering systems make it a tough challenge for large-scale finite element modal analysis. At the same time, realizing the systematic analysis of the entire large structure of these engineering systems is extremely meaningful in practice. This article proposes a multilevel hierarchical parallel algorithm for large-scale finite element modal analysis to reduce the parallel computational efficiency loss when using heterogeneous multicore distributed storage computers in solving large-scale finite element modal analysis. Based on two-level partitioning and four-transformation strategies, the proposed algorithm not only improves… More >

  • Open Access

    ARTICLE

    A New Hybrid Hierarchical Parallel Algorithm to Enhance the Performance of Large-Scale Structural Analysis Based on Heterogeneous Multicore Clusters

    Gaoyuan Yu1, Yunfeng Lou2, Hang Dong3, Junjie Li1, Xianlong Jin1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 135-155, 2023, DOI:10.32604/cmes.2023.025166 - 05 January 2023

    Abstract Heterogeneous multicore clusters are becoming more popular for high-performance computing due to their great computing power and cost-to-performance effectiveness nowadays. Nevertheless, parallel efficiency degradation is still a problem in large-scale structural analysis based on heterogeneous multicore clusters. To solve it, a hybrid hierarchical parallel algorithm (HHPA) is proposed on the basis of the conventional domain decomposition algorithm (CDDA) and the parallel sparse solver. In this new algorithm, a three-layer parallelization of the computational procedure is introduced to enable the separation of the communication of inter-nodes, heterogeneous-core-groups (HCGs) and inside-heterogeneous-core-groups through mapping computing tasks to various… More >

Displaying 1-10 on page 1 of 2. Per Page