Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    Numerical Simulation of Liquified Natural Gas Boiling Heat Transfer Characteristics in Helically Coiled Tube-in-Tube Heat Exchangers

    Fayi Yan*, He Lu, Shijie Feng

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1493-1514, 2024, DOI:10.32604/fhmt.2024.055324 - 30 October 2024

    Abstract Helically coiled tube-in-tube (HCTT) heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency. HCTT heat exchangers play an important role in liquified natural gas (LNG) use and cold energy recovery. The heat transfer characteristics, pressure distribution, and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated. By comparing the simulation results of the computational model with existing experimental results, the effectiveness of the computational model is verified. The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related… More >

  • Open Access

    ARTICLE

    Investigation of the Structure Design and Heat Transfer Characteristics of Heating Cable

    Lihui Zhang1, Huichuang Yang1, Weigang Li3, Jixin Xu3, Wei Zhou2, Donghui Wen4, Yanmin Zhang3,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.5, pp. 1477-1492, 2024, DOI:10.32604/fhmt.2024.052675 - 30 October 2024

    Abstract Indoor heating with an electrical heating cable, which has no harmful emissions to the environment, is an attractive way for radiant floor heating. To improve the heat transfer efficiency, a novel structure of the heating cable was designed by proposing the concept of the aluminum finned sheath. The transient heat transfer model from the embedded heating cables to the floor is established to validate the feasibility of this novel cable. The effects of the fin number and shape on the cable’s temperature and heat flux distribution were analyzed. The results show that, with the specific More > Graphic Abstract

    Investigation of the Structure Design and Heat Transfer Characteristics of Heating Cable

  • Open Access

    ARTICLE

    Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower

    Kaiyong Hu1,2,*, Zhaoyi Chen1, Yunqing Hu1, Huan Sun1, Zhili Sun1, Tonghua Zou1,3, Jinghong Ning1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.9, pp. 2109-2126, 2024, DOI:10.32604/fdmp.2024.050773 - 23 August 2024

    Abstract The current study focuses on spray cooling applied to the heat exchange components of a cooling tower. An optimization of such processes is attempted by assessing different spray flow rates and droplet sizes. For simplicity, the heat exchanger of the cooling tower is modeled as a horizontal round tube and a cooling tower spray cooling model is developed accordingly using a computational fluid dynamics (CFD) software. The study examines the influence of varying spray flow rates and droplet sizes on the heat flow intensity between the liquid layer on the surface of the cylindrical tube… More > Graphic Abstract

    Simulation Study on the Heat Transfer Characteristics of a Spray-Cooled Single-Pipe Cooling Tower

  • Open Access

    ARTICLE

    Experiments and Analyses on Heat Transfer Characteristics from a Solid Wall to a Strip-Shaped Wick Structure

    Kenta Hashimoto1, Guohui Sun1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 687-702, 2024, DOI:10.32604/fhmt.2024.052928 - 11 July 2024

    Abstract Centered or striped wick structures have been used to develop ultrathin heat pipes. Differing from traditional heat pipes, the centered or striped wick structures leave noncontact container surfaces with the wick structure. In this study, experiments and numerical analyses were conducted to investigate the influence of these noncontact surfaces. In the experiments, a strip-shaped wick structure was placed vertically, the top was sandwiched between wider rods and the bottom was immersed in a working fluid. The rod width was greater than the wick width; thus, noncontact surfaces were left between the rod and the wick… More >

  • Open Access

    ARTICLE

    Numerical Investigations on Fluid Flow and Heat Transfer Characteristics of an Ultra-Thin Heat Pipe with Separated Wick Structures

    Yasushi Koito1,*, Akira Fukushima2

    Frontiers in Heat and Mass Transfer, Vol.22, No.3, pp. 869-887, 2024, DOI:10.32604/fhmt.2024.050910 - 11 July 2024

    Abstract Thermal and fluid-flow characteristics were numerically analyzed for ultra-thin heat pipes. Many studies have been conducted for ultra-thin heat pipes with a centered wick structure, but this study focused on separated wick structures to increase the evaporation/condensation surface areas within the heat pipe and to reduce the concentration of heat flux within the wick structure. A mathematical heat-pipe model was made in the three-dimensional coordinate system, and the model consisted of three regions: a vapor channel, liquid-wick, and container wall regions. The conservation equations for mass, momentum, and energy were solved numerically with boundary conditions… More >

  • Open Access

    ARTICLE

    Flow Patterns and Heat Transfer Characteristics of a Polymer Pulsating Heat Pipe Filled with Hydrofluoroether

    Nobuhito Nagasato1, Zhengyuan Pei1, Yasushi Koito2,*

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 49-63, 2024, DOI:10.32604/fhmt.2024.047502 - 21 March 2024

    Abstract Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe (PHP). Hydrofluoroether (HFE)-7100 was used as a working fluid, and its filling ratio was 50% of the entire PHP channel. A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer, and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera. The video images were then analyzed to obtain the flow patterns in the PHP. The heat transfer characteristics of the PHP were discussed based on the… More >

  • Open Access

    ARTICLE

    Heat Transfer Characteristics for Solar Energy Aspect on the Flow of Tangent Hyperbolic Hybrid Nanofluid over a Sensor Wedge and Stagnation Point Surface

    Asmaa Habib Alanzi, N. Ameer Ahammad*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 179-197, 2023, DOI:10.32604/fhmt.2023.042009 - 30 November 2023

    Abstract The conversion of solar radiation to thermal energy has recently attracted a lot of interest as the requirement for renewable heat and power grows. Due to their enhanced ability to promote heat transmission, nanofluids can significantly contribute to enhancing the efficiency of solar-thermal systems. This article focus solar energy aspect on the effects of the thermal radiation in the flow of a hyperbolic tangent nanofluid containing magnesium oxide (MgO) and silver (Ag) are the nanoparticle with the base fluid as kerosene through a wedge and stagnation. The system of hybrid nanofluid transport equations are transformed into… More >

  • Open Access

    ARTICLE

    Evaporation Heat Transfer Characteristics from a Sintered Powder Wick Structure Sandwiched between Two Solid Walls

    Yasushi Koito1,*, Shoma Hitotsuya2, Takamitsu Takayama2, Kenta Hashimoto2

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 33-46, 2023, DOI:10.32604/fhmt.2023.041829 - 30 November 2023

    Abstract An ultra-thin flattened heat pipe has been developed with a centered wick structure. This structure is essential to make the heat pipe thinner. However, the centered wick structure reduces the evaporation and condensation surface areas of the wick structure because it is sandwiched between heat pipe walls. In this study, because detailed discussion has not been made, heat transfer experiments were conducted for the wick structure sandwiched between two solid walls. This study focused on the evaporation heat transfer characteristics from the sandwiched wick structure. The experiments were conducted with three wick structures, that is,… More >

  • Open Access

    ARTICLE

    Effect of the Wick Deflection Angles on Heat Transfer Characteristics for the Flat LHP

    Zhuohuan Hu1, Sixian Sun1, Chengwei Yuan1, Yan Cao2, Jiayin Xu1,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 107-123, 2023, DOI:10.32604/fhmt.2023.041837 - 30 November 2023

    Abstract Loop Heat Pipe (LHP) is an efficient two-phase heat transfer device, which can be used in waste heat recovery, electronics cooling, aerospace and other fields. The wick, the core component of LHP, plays an important role in its start-up and operation. In this paper, the wick fabricated by 3D printing technology had uniform and interconnected pores. In the experiment, the position of the parallel vapor removal grooves was always fixed towards the vapor outlet. When the cylindrical wick was placed in the evaporator, the rotation angle relative to its central axis could be changed, thus… More > Graphic Abstract

    Effect of the Wick Deflection Angles on Heat Transfer Characteristics for the Flat LHP

  • Open Access

    ARTICLE

    Numerical Investigations of Laminar Air Flow and Heat Transfer Characteristics in a Square Channel Inserted with Discrete X-V Baffles (XVB)

    Amnart Boonloi1, Withada Jedsadaratanachai2,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 317-336, 2023, DOI:10.32604/fhmt.2023.044929 - 30 November 2023

    Abstract Thermal performance enhancement in a square channel heat exchanger (HX) using a passive technique is presented. Vortex turbulator insertion in a square channel HX as a passive technique is selected for thermal improvement. The vortex turbulator of interest is discrete X-V baffles (XVB). The discrete XVBs are inserted in the square channel with the main aim of generating vortex flow. The vortex flow generated can support the enhanced convective heat transfer coefficient and also enhance HX performance. Effects of baffle configuration (type A and B), baffle size (w/H = 0.05, 0.10, 0.15 and 0.20), baffle… More > Graphic Abstract

    Numerical Investigations of Laminar Air Flow and Heat Transfer Characteristics in a Square Channel Inserted with Discrete X-V Baffles (XVB)

Displaying 1-10 on page 1 of 23. Per Page