Yuzhe Zhang1,#, Guanglong Li1,#, Shaowang Hu1, Jinfeng Liu1, Yushi Jiang1, Siyan Liu2,*, Shuyan Guan2,*, Jing Qu2, Dan Yao1, Andi Shi1, Yixuan Liu1
Phyton-International Journal of Experimental Botany, Vol.91, No.6, pp. 1183-1198, 2022, DOI:10.32604/phyton.2022.018853
- 14 February 2022
Abstract Soybean (Glycine max (L.) Merr.) is an important cultivated crop, which requires much water during its growth, and drought seriously affects soybean yields. Studies have shown that the expression of small heat shock proteins can enhance drought resistance, cold resistance and salt resistance of plants. In this experiment, soybean GmHsps_p23-like gene was successfully cloned by RT-PCR, the protein encoded by the GmHsps_p23-like gene was subjected to bioinformatics analysis, and the pCAMBIA3301-GmHsps_p23-like overexpression vector and pCBSG015-GmHsps_p23-like gene editing vector were constructed. Agrobacterium-mediated method was used to transform soybeans to obtain positive plants. RT-PCR detection, rehydration experiment and drought resistance… More >