Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    An FPGA Design for Real-Time Image Denoising

    Ahmed Ben Atitallah*

    Computer Systems Science and Engineering, Vol.43, No.2, pp. 803-816, 2022, DOI:10.32604/csse.2022.024393 - 20 April 2022

    Abstract The increasing use of images in miscellaneous applications such as medical image analysis and visual quality inspection has led to growing interest in image processing. However, images are often contaminated with noise which may corrupt any of the following image processing steps. Therefore, noise filtering is often a necessary preprocessing step for the most image processing applications. Thus, in this paper an optimized field-programmable gate array (FPGA) design is proposed to implement the adaptive vector directional distance filter (AVDDF) in hardware/software (HW/SW) codesign context for removing noise from the images in real-time. For that, the… More >

  • Open Access

    ARTICLE

    An Efficient HW/SW Design for Text Extraction from Complex Color Image

    Mohamed Amin Ben Atitallah1,2,3,*, Rostom Kachouri2, Ahmed Ben Atitallah4, Hassene Mnif1

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5963-5977, 2022, DOI:10.32604/cmc.2022.024345 - 14 January 2022

    Abstract In the context of constructing an embedded system to help visually impaired people to interpret text, in this paper, an efficient High-level synthesis (HLS) Hardware/Software (HW/SW) design for text extraction using the Gamma Correction Method (GCM) is proposed. Indeed, the GCM is a common method used to extract text from a complex color image and video. The purpose of this work is to study the complexity of the GCM method on Xilinx ZCU102 FPGA board and to propose a HW implementation as Intellectual Property (IP) block of the critical blocks in this method using HLS More >

Displaying 1-10 on page 1 of 2. Per Page