Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (161)
  • Open Access

    REVIEW

    Do tensile and shear forces exerted on cells influence mechanotransduction through stored energy considerations?

    FREDERICK H. SILVER1,2,*, TANMAY DESHMUKH2

    BIOCELL, Vol.48, No.4, pp. 525-540, 2024, DOI:10.32604/biocell.2024.047965

    Abstract All tissues in the body are subjected externally to gravity and internally by collagen fibril and cellular retractive forces that create stress and energy equilibrium required for homeostasis. Mechanotransduction involves mechanical work (force through a distance) and energy storage as kinetic and potential energy. This leads to changes in cell mitosis or apoptosis and the synthesis or loss of tissue components. It involves the application of energy directly to cells through integrin-mediated processes, cell-cell connections, stretching of the cell cytoplasm, and activation of the cell nucleus via yes-associated protein (YAP) and transcriptional coactivator with PDZ-motif (TAZ). These processes involve numerous… More >

  • Open Access

    ARTICLE

    Bronchoalveolar lavage fluid metagenomic next-generation sequencing assay for identifying pathogens in lung cancer patients

    JIYU WANG1,2, HUIXIA LI1,2, DEYUAN ZHOU1,2, LIHONG BAI1,2, KEJING TANG1,2,3,*

    BIOCELL, Vol.48, No.4, pp. 623-637, 2024, DOI:10.32604/biocell.2024.030420

    Abstract Background: For patients with lung cancer, timely identification of new lung lesions as infectious or non-infectious, and accurate identification of pathogens is very important in improving OS of patients. As a new auxiliary examination, metagenomic next-generation sequencing (mNGS) is believed to be more accurate in diagnosing infectious diseases in patients without underlying diseases, compared with conventional microbial tests (CMTs). We designed this study to find out whether mNGS has better performance in distinguishing infectious and non-infectious diseases in lung cancer patients using bronchoalveolar lavage fluid (BALF). Materials and Methods: This study was a real-world retrospective review based on electronic medical… More >

  • Open Access

    REVIEW

    Crossroads: Pathogenic role and therapeutic targets of neutrophil extracellular traps in rheumatoid arthritis

    YANG LI1,2, JIAN LIU1,3,*, YUEDI HU1,2, CHENGZHI CONG1,2, YIMING CHEN1,2, QIAO ZHOU1,2

    BIOCELL, Vol.48, No.1, pp. 9-19, 2024, DOI:10.32604/biocell.2023.045862

    Abstract Rheumatoid arthritis (RA) is a prevalent autoimmune disease whose main features include chronic synovial inflammation, bone destruction, and joint degeneration. Neutrophils are often considered to be the first responders to inflammation and are a key presence in the inflammatory milieu of RA. Neutrophil extracellular traps (NETs), a meshwork of DNA-histone complexes and proteins released by activated neutrophils, are widely involved in the pathophysiology of autoimmune diseases, especially RA, in addition to playing a key role in the neutrophil innate immune response. NETs have been found to be an important source of citrullinated autoantigen antibodies and inflammatory factor release, which can… More > Graphic Abstract

    Crossroads: Pathogenic role and therapeutic targets of neutrophil extracellular traps in rheumatoid arthritis

  • Open Access

    ARTICLE

    Stability and Error Analysis of Reduced-Order Methods Based on POD with Finite Element Solutions for Nonlocal Diffusion Problems

    Haolun Zhang1, Mengna Yang1, Jie Wei2, Yufeng Nie2,*

    Digital Engineering and Digital Twin, Vol.2, pp. 49-77, 2024, DOI:10.32604/dedt.2023.044180

    Abstract This paper mainly considers the formulation and theoretical analysis of the reduced-order numerical method constructed by proper orthogonal decomposition (POD) for nonlocal diffusion problems with a finite range of nonlocal interactions. We first set up the classical finite element discretization for nonlocal diffusion equations and briefly explain the difference between nonlocal and partial differential equations (PDEs). Nonlocal models have to handle double integrals when using finite element methods (FEMs), which causes the generation of algebraic systems to be more challenging and time-consuming, and discrete systems have less sparsity than those for PDEs. So we establish a reduced-order model (ROM) for… More >

  • Open Access

    ARTICLE

    Optimization of Center of Gravity Position and Anti-Wave Plate Angle of Amphibious Unmanned Vehicle Based on Orthogonal Experimental Method

    Deyong Shang1,2, Xi Zhang1, Fengqi Liang1, Chunde Zhai1, Hang Yang1, Yanqi Niu1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2027-2041, 2024, DOI:10.32604/cmes.2023.045750

    Abstract When the amphibious vehicle navigates in water, the angle of the anti-wave plate and the position of the center of gravity greatly influence the navigation characteristics. In the relevant research on reducing the navigation resistance of amphibious vehicles by adjusting the angle of the anti-wave plate, there is a lack of scientific selection of parameters and reasonable research of simulation results by using mathematical methods, and the influence of the center of gravity position on navigation characteristics is not considered at the same time. To study the influence of the combinations of the angle of the anti-wave plate and the… More >

  • Open Access

    REVIEW

    Exosomes in viral infection: Effects for pathogenesis and treatment strategies

    FATEMEH HEIDARI1,2, REIHANEH SEYEDEBRAHIMI1,2, PIAO YANG3, MOHSEN ESLAMI FARSANI1,2, SHIMA ABABZADEH2,4, NASER KALHOR5, HAMED MANOOCHEHRI6, MOHSEN SHEYKHHASAN7,*, MARYAM AZIMZADEH8,9,*

    BIOCELL, Vol.47, No.12, pp. 2597-2608, 2023, DOI:10.32604/biocell.2023.043351

    Abstract Exosomes are small vesicles that carry molecules from one cell to another. They have many features that make them interesting for research, such as their stability, low immunogenicity, size of the nanoscale, toxicity, and selective delivery. Exosomes can also interact with viruses in diverse ways. Emerging research highlights the significant role of exosomes in viral infections, particularly in the context of diseases like COVID-19, HIV, HBV and HCV. Understanding the intricate interplay between exosomes and the human immune system holds great promise for the development of effective antiviral therapies. An important aspect is gaining clarity on how exosomes influence the… More >

  • Open Access

    ARTICLE

    Evaluation of combined detection of nuclear factor erythroid 2-related factor 2 and glutathione peroxidase 4 in primary hepatic carcinoma and preliminary exploration of pathogenesis

    JIE DUAN, AIDONG GU*, WEI CHEN, CHANGHAO CHEN, FANGNAN SONG, FAXI CHEN, FANGFANG JIANG, HUIWEN XING

    BIOCELL, Vol.47, No.12, pp. 2609-2615, 2023, DOI:10.32604/biocell.2023.042472

    Abstract Objective: This study aims to analyze the clinical significance and mechanism of nuclear factor erythroid 2-related factor 2 (NRF2) and glutathione peroxidase 4 (GPX4) in primary hepatic carcinoma (PHC). Methods: The expression of NRF2 and GPX4 in peripheral blood of patients with PHC was determined to analyze the diagnostic value of the two combined for PHC. The prognostic significance of NRF2 and GPX4 was evaluated by 3-year follow-up. Human liver epithelial cells THLE-2 and human hepatocellular carcinoma cells HepG2 were purchased, and the expression of NRF2 and GPX4 in the cells was determined. NRF2 and GPX4 aberrant expression vectors were… More > Graphic Abstract

    Evaluation of combined detection of nuclear factor erythroid 2-related factor 2 and glutathione peroxidase 4 in primary hepatic carcinoma and preliminary exploration of pathogenesis

  • Open Access

    ARTICLE

    ANALYSIS OF CHAOTIC NATURAL CONVECTION IN A TALL RECTANGULAR CAVITY WITH NON-ISOTHERMAL WALLS

    Heather Dillona , Ashley Emeryb,† , Ann Mescherb

    Frontiers in Heat and Mass Transfer, Vol.4, No.2, pp. 1-9, 2013, DOI:10.5098/hmt.v4.2.3004

    Abstract A computational model is presented that extends prior work on unsteady natural convection in a tall rectangular cavity with aspect ratio 10 and applies Proper Orthogonal Decomposition to the results. The solution to the weakly compressible Navier-Stokes equation is computed for a range of Rayleigh numbers between 2 × 107 and 2.2 × 108 with Prandtl number 0.71. A detailed spectral analysis shows dynamic system behavior beyond the Hopf bifurcation that was not previously observed. The wider Rayleigh range reveals new dynamic system behavior for the rectangular geometry, specifically a return to a stable oscillatory behavior that was not predicted… More >

  • Open Access

    REVIEW

    Molecular basis of COVID-19, ARDS and COVID-19-associated ARDS: Diagnosis pathogenesis and therapeutic strategies

    PRIYADHARSHINI THANJAVUR SRIRAMAMOORTHI1,2, GAYATHRI GOPAL1,2, SHIBI MURALIDAR1,2, SAI RAMANAN ESWARAN1,2, DANUSH NARAYAN PANNEERSELVAM1,2, BHUVANESWARAN MEIYANATHAN1,2, SRICHANDRASEKAR THUTHIKKADU INDHUPRAKASH1,2, SENTHIL VISAGA AMBI1,2,*

    BIOCELL, Vol.47, No.11, pp. 2335-2350, 2023, DOI:10.32604/biocell.2023.029379

    Abstract The novel coronavirus pneumonia (COVID-19) is spreading worldwide and threatening people greatly. The routes by which SARS-CoV-2 causes lung injury have grown to be a major concern in the scientific community since patients with new Coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV-2) have a high likelihood of developing acute respiratory distress syndrome (ARDS) in severe cases. The mortality rate of COVID-19 has increased over the period due to rapid spread, and it becomes crucial to understand the disease epidemiology, pathogenic mechanisms, and suitable treatment strategies. ARDS is a respiratory disorder and is one of the clinical manifestations observed in patients… More > Graphic Abstract

    Molecular basis of COVID-19, ARDS and COVID-19-associated ARDS: Diagnosis pathogenesis and therapeutic strategies

  • Open Access

    REVIEW

    Role of RIPK1 in the pathogenesis of acute respiratory distress syndrome

    XUNAN ZHAO#, EMMANUEL MAGO#, DAN WENG*

    BIOCELL, Vol.47, No.10, pp. 2151-2162, 2023, DOI:10.32604/biocell.2023.030570

    Abstract Acute respiratory distress syndrome (ARDS) is a life-threatening pulmonary disease typically caused by microbial infections, trauma, inhalation of harmful gases, and other factors. It is characterized by an inflammation in the lungs and increased alveolar permeability, leading to pulmonary edema and consequently, a low oxygen supply or hypoxemia. ARDS is responsible for 1 in 10 admissions to intensive care units, and the mortality rate for patients with severe ARDS is as high as 46%. Extensive efforts have been devoted to investigating the pathological mechanisms of ARDS to develop new effective clinical strategies. Recent studies have reported that receptor-interacting serine/threonine kinase… More > Graphic Abstract

    Role of RIPK1 in the pathogenesis of acute respiratory distress syndrome

Displaying 1-10 on page 1 of 161. Per Page