Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (74)
  • Open Access

    ARTICLE

    Arrhythmia Detection by Using Chaos Theory with Machine Learning Algorithms

    Maie Aboghazalah1,*, Passent El-kafrawy2, Abdelmoty M. Ahmed3, Rasha Elnemr5, Belgacem Bouallegue3, Ayman El-sayed4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3855-3875, 2024, DOI:10.32604/cmc.2023.039936

    Abstract Heart monitoring improves life quality. Electrocardiograms (ECGs or EKGs) detect heart irregularities. Machine learning algorithms can create a few ECG diagnosis processing methods. The first method uses raw ECG and time-series data. The second method classifies the ECG by patient experience. The third technique translates ECG impulses into Q waves, R waves and S waves (QRS) features using richer information. Because ECG signals vary naturally between humans and activities, we will combine the three feature selection methods to improve classification accuracy and diagnosis. Classifications using all three approaches have not been examined till now. Several More >

  • Open Access

    ARTICLE

    Trading in Fast-Changing Markets with Meta-Reinforcement Learning

    Yutong Tian1, Minghan Gao2, Qiang Gao1,*, Xiao-Hong Peng3

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 175-188, 2024, DOI:10.32604/iasc.2024.042762

    Abstract How to find an effective trading policy is still an open question mainly due to the nonlinear and non-stationary dynamics in a financial market. Deep reinforcement learning, which has recently been used to develop trading strategies by automatically extracting complex features from a large amount of data, is struggling to deal with fast-changing markets due to sample inefficiency. This paper applies the meta-reinforcement learning method to tackle the trading challenges faced by conventional reinforcement learning (RL) approaches in non-stationary markets for the first time. In our work, the history trading data is divided into multiple… More >

  • Open Access

    ARTICLE

    The Turbulent Schmidt Number for Transient Contaminant Dispersion in a Large Ventilated Room Using a Realizable k-ε Model

    Fei Wang, Qinpeng Meng, Jinchi Zhao, Xin Wang, Yuhong Liu, Qianru Zhang*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.4, pp. 829-846, 2024, DOI:10.32604/fdmp.2023.026917

    Abstract Buildings with large open spaces in which chemicals are handled are often exposed to the risk of explosions. Computational fluid dynamics is a useful and convenient way to investigate contaminant dispersion in such large spaces. The turbulent Schmidt number (Sct) concept has typically been used in this regard, and most studies have adopted a default value. We studied the concentration distribution for sulfur hexafluoride (SF6) assuming different emission rates and considering the effect of Sct. Then we examined the same problem for a light gas by assuming hydrogen gas (H2) as the contaminant. When SF6 was considered as More >

  • Open Access

    ARTICLE

    AutoRhythmAI: A Hybrid Machine and Deep Learning Approach for Automated Diagnosis of Arrhythmias

    S. Jayanthi*, S. Prasanna Devi

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2137-2158, 2024, DOI:10.32604/cmc.2024.045975

    Abstract In healthcare, the persistent challenge of arrhythmias, a leading cause of global mortality, has sparked extensive research into the automation of detection using machine learning (ML) algorithms. However, traditional ML and AutoML approaches have revealed their limitations, notably regarding feature generalization and automation efficiency. This glaring research gap has motivated the development of AutoRhythmAI, an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias. Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection, effectively bridging the gap between data preprocessing and model selection. To validate… More >

  • Open Access

    ARTICLE

    Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network

    Muhammad Aleem Raza1, Muhammad Anwar2, Kashif Nisar3, Ag. Asri Ag. Ibrahim3,*, Usman Ahmed Raza1, Sadiq Ali Khan4, Fahad Ahmad5

    CMC-Computers, Materials & Continua, Vol.77, No.3, pp. 3817-3834, 2023, DOI:10.32604/cmc.2023.032275

    Abstract With the help of computer-aided diagnostic systems, cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease. However, the early diagnosis of cardiac arrhythmia is one of the most challenging tasks. The manual analysis of electrocardiogram (ECG) data with the help of the Holter monitor is challenging. Currently, the Convolutional Neural Network (CNN) is receiving considerable attention from researchers for automatically identifying ECG signals. This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute More >

  • Open Access

    ARTICLE

    Ventricular Arrhythmia in the Fontan Circulation: Prevalence, Risk Factors and Clinical Implications

    Charis Tan1,2 , Diana Zannino3, Carley Clendenning3, Sophie Offen4, Thomas L. Gentles5, Julian Ayer6, David Tanous7, Vishva Wijesekera8, Leeanne Grigg9, David Celermajer2,4,10, Mark McGuire2,4 , Yves d’Udekem3,11,12, Rachael Cordina2,4,10,*

    Congenital Heart Disease, Vol.18, No.5, pp. 507-523, 2023, DOI:10.32604/chd.2023.028829

    Abstract Objective: Sudden cardiac death (SCD) and malignant ventricular arrhythmia (VA) are increasingly recognized as important issues for people living with a Fontan circulation, but data are lacking. We sought to characterize the cohort who had sudden cardiac death, most likely related to VA and/or documented VA in the Australia and New Zealand Fontan Registry including risk factors and clinical outcomes. Methods: A retrospective cohort study was performed. Inclusion criteria were documented non-sustained ventricular tachycardia, sustained ventricular tachycardia, ventricular fibrillation, resuscitated cardiac arrest or SCD > 30 days post-Fontan completion. Results: Of 1611 patients, 20 (1.2%) had VA;… More >

  • Open Access

    ARTICLE

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

    Vitaliy Suvorov1,2,*, Olga Loboda2, Maria Balakina1, Igor Kulczycki2

    Congenital Heart Disease, Vol.18, No.5, pp. 491-505, 2023, DOI:10.32604/chd.2023.030583

    Abstract Background: Three-dimensional printing technology may become a key factor in transforming clinical practice and in significant improvement of treatment outcomes. The introduction of this technique into pediatric cardiac surgery will allow us to study features of the anatomy and spatial relations of a defect and to simulate the optimal surgical repair on a printed model in every individual case. Methods: We performed the prospective cohort study which included 29 children with congenital heart defects. The hearts and the great vessels were modeled and printed out. Measurements of the same cardiac areas were taken in the… More > Graphic Abstract

    A New Three-Dimensional (3D) Printing Prepress Algorithm for Simulation of Planned Surgery for Congenital Heart Disease

  • Open Access

    ARTICLE

    SORET AND RADIATION EFFECTS ON AN UNSTEADY FLOW OF A CASSON FLUID THROUGH POROUS VERTICAL CHANNEL WITH EXPANSION AND CONTRACTION

    N. Vijayaa,*, Y. Hari Krishnaa , K. Kalyanib, G.V.R. Reddya

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-11, 2018, DOI:10.5098/hmt.11.19

    Abstract The present paper deals with the thermo physical properties of a Casson fluid through an oscillating vertical wall embedded through porous medium under the influence transverse magnetic field, radiation, constant heat source and first order chemical reaction. The radiative heat loss is modelled by using Rosseland approximation. Similarity variables were used to convert the partial differential equations into ordinary differential equation. The transformed ordinary differential equations are solved numerically using Runge - Kutta -Fehlberg method with shooting technique. In order to get perfect perception of the flow pattern we obtain the graphs of axial velocity, More >

  • Open Access

    ARTICLE

    Meta-Heuristic Optimized Hybrid Wavelet Features for Arrhythmia Classification

    S. R. Deepa1, M. Subramoniam2,*, R. Swarnalatha3, S. Poornapushpakala2, S. Barani2

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 745-761, 2023, DOI:10.32604/iasc.2023.034211

    Abstract The non-invasive evaluation of the heart through EectroCardioGraphy (ECG) has played a key role in detecting heart disease. The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them. Thus, a computerized system is needed to classify ECG signals with more accurate results effectively. Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths. In this work, a Computerized Abnormal Heart Rhythms Detection (CAHRD) system is developed using ECG signals. It consists of four stages; preprocessing, feature extraction, feature optimization and classifier. At first, Pan and… More >

  • Open Access

    ARTICLE

    Cardiac Arrhythmia Disease Classifier Model Based on a Fuzzy Fusion Approach

    Fatma Taher1, Hamoud Alshammari2, Lobna Osman3, Mohamed Elhoseny4, Abdulaziz Shehab5,2,*, Eman Elayat6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4485-4499, 2023, DOI:10.32604/cmc.2023.036118

    Abstract Cardiac diseases are one of the greatest global health challenges. Due to the high annual mortality rates, cardiac diseases have attracted the attention of numerous researchers in recent years. This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases. The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms. An ensemble of classifiers is then applied to the fusion’s results. The proposed model classifies the arrhythmia dataset from the University of California, Irvine into normal/abnormal classes as well as 16 classes of arrhythmia.… More >

Displaying 1-10 on page 1 of 74. Per Page