Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Gyroscope Dynamic Balance Counterweight Prediction Based on Multi-Head ResGAT Networks

    Wuyang Fan, Shisheng Zhong*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2525-2555, 2024, DOI:10.32604/cmes.2023.046951 - 11 March 2024

    Abstract The dynamic balance assessment during the assembly of the coordinator gyroscope significantly impacts the guidance accuracy of precision-guided equipment. In dynamic balance debugging, reliance on rudimentary counterweight empirical formulas persists, resulting in suboptimal debugging accuracy and an increased repetition rate. To mitigate this challenge, we present a multi-head residual graph attention network (ResGAT) model, designed to predict dynamic balance counterweights with high precision. In this research, we employ graph neural networks for interaction feature extraction from assembly graph data. An SDAE-GPC model is designed for the assembly condition classification to derive graph data inputs for More >

Displaying 1-10 on page 1 of 1. Per Page