Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (56)
  • Open Access

    ARTICLE

    Revealing the role of honokiol in human glioma cells by RNA-seq analysis

    YUNBAO GUO1,#, XU LIU1,#, QI XU2, XIAOTONG ZHOU3, JIAWEI LIU3, YANYAN XU2, YAN LU2,*, HAIYAN LIU2,*

    BIOCELL, Vol.48, No.6, pp. 945-958, 2024, DOI:10.32604/biocell.2024.049748

    Abstract Background: Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue. Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark of Magnoliaceae plants. It also has anti-infection, antitumor, and immunomodulatory effects. In this study, we found that honokiol induces cell apoptosis in the human glioma cell lines U87-MG and U251-MG. However, the mechanism through which honokiol regulates glioma cell apoptosis is still unknown. Methods: We performed RNA-seq analysis of U251-MG cells treated with honokiol and control cells. Protein-protein interaction (PPI)… More > Graphic Abstract

    Revealing the role of honokiol in human glioma cells by RNA-seq analysis

  • Open Access

    ARTICLE

    TIPE2 Inhibits Hypoxia-Induced Wnt/β-Catenin Pathway Activation and EMT in Glioma Cells

    Zhi-jun Liu*1, Hong-lin Liu*1, Hai-cun Zhou, Gui-cong Wang*

    Oncology Research, Vol.24, No.4, pp. 255-261, 2016, DOI:10.3727/096504016X14666990347356

    Abstract Hypoxia-induced epithelial-to-mesenchymal transition (EMT) could facilitate tumor progression. TIPE2, the tumor necrosis factor-α (TNF-α)-induced protein 8-like 2 (also known as TNFAIP8L2), is a member of the TNF-α-induced protein 8 (TNFAIP8, TIPE) family and has been involved in the development and progression of several tumors. However, the effects of TIPE2 on the EMT process in glioma cells and the underlying mechanisms of these effects have not been previously reported. In our study, we assessed the roles of TIPE2 in the EMT process in glioma cells in response to hypoxia. Our results indicated that TIPE2 expression was More >

  • Open Access

    ARTICLE

    Knockdown of E2F3 Inhibits Proliferation, Migration, and Invasion and Increases Apoptosis in Glioma Cells

    Zhi-Gang Shen*1, Xiao-Zhou Liu†1, Chang-Xiu Chen, Jing-Min Lu§

    Oncology Research, Vol.25, No.9, pp. 1555-1566, 2017, DOI:10.3727/096504017X14897158009178

    Abstract E2F3a, as a member of the E2F family, is essential for cell division associated with the progression of many cancers. However, the biological effect of E2F3a on glioma is not understood as well. To investigate the functional mechanism of E2F3a in glioma, we examined the expression of E2F3a in glioma tissue and cell lines. We found that E2F3a was upregulated in glioma tissue compared with adjacent tissue, and this was associated with a poor survival rate. E2F3a was highly expressed in glioma cell lines compared with normal HEB cell lines. Knockdown of E2F3a significantly inhibited… More >

  • Open Access

    ARTICLE

    Long Noncoding RNA MEG3 Suppresses Glioma Cell Proliferation, Migration, and Invasion by Acting as a Competing Endogenous RNA of miR-19a

    Nan Qin*1, Gui-Feng Tong†1, Li-Wei Sun, Xiao-Lin Xu

    Oncology Research, Vol.25, No.9, pp. 1471-1478, 2017, DOI:10.3727/096504017X14886689179993

    Abstract Glioma, with varying malignancy grades and histological subtypes, is the most common primary brain tumor in adults. Long noncoding RNAs (lncRNAs) are non-protein-coding transcripts and have been proven to play an important role in tumorigenesis. Our study aims to elucidate the combined effect of lncRNA maternally expressed gene 3 (MEG3) and microRNA-19a (miR-19a) in human glioma U87 and U251 cell lines. Real-time PCR revealed that MEG3 was downregulated and miR-19a was upregulated in malignant glioma tissues and cell lines. Bioinformatics analyses (TargetScan, miRanda, and starBase V2.0) showed that phosphatase and tensin homolog (PTEN) is a… More >

  • Open Access

    ARTICLE

    Knockdown of Angiopoietin-Like Protein 2 Inhibits Proliferation and Invasion in Glioma Cells via Suppressing the ERK/MAPK Signaling Pathway

    Li-Kun Yang*1, Jie Zhu*1, Yu-Hua Chen†1, Dong-Liang Wang, Hua Li§, Liang-Jun Zhang§, Jing-Ru Zhou, Wei Liu

    Oncology Research, Vol.25, No.8, pp. 1349-1355, 2017

    Abstract Angiopoietin-like protein 2 (ANGPTL2), a member of the glycoprotein family, is mainly secreted by adipose tissues under normal conditions. Recently, ANGPTL2 has been found to be upregulated in some types of cancers and is considered to be a tumor promoter. However, the functional significance of ANGPTL2 in glioma has not yet been elucidated. In this study, we investigated the specific role of ANGPTL2 in glioma. The results showed that ANGPTL2 was highly expressed in glioma tissues and cell lines. Knockdown of ANGPTL2 reduced the proliferative and invasive abilities of glioma cells. Moreover, the tumorigenesis assay More >

  • Open Access

    ARTICLE

    Overexpression of MicroRNA-216a Suppresses Proliferation, Migration, and Invasion of Glioma Cells by Targeting Leucine-Rich Repeat-Containing G Protein-Coupled Receptor 5

    Junfeng Zhang*1, Kun Xu†1, Lili Shi*, Li Zhang*, Zhaohua Zhao*, Hao Xu*, Fei Liang*, Hongbo Li*, Yan Zhao*, Xi Xu*, Yingfang Tian

    Oncology Research, Vol.25, No.8, pp. 1317-1327, 2017, DOI:10.3727/096504017X14874323871217

    Abstract Increasing studies have suggested that microRNAs (miRNAs) are involved in the development of gliomas. MicroRNA-216a has been reported to be a tumor-associated miRNA in many types of cancer, either as an oncogene or as a tumor suppressor. However, little is known about the function of miR-216a in gliomas. The present study was designed to explore the potential role of miR-216a in gliomas. We found that miR-216a was significantly decreased in glioma tissues and cell lines. Overexpression of miR-216a significantly suppressed the proliferation, migration, and invasion of glioma cells. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) More >

  • Open Access

    ARTICLE

    MicroRNA-409-3p Represses Glioma Cell Invasion and Proliferation by Targeting High-Mobility Group Nucleosome-Binding Domain 5

    Yidong Cao*1, Liang Zhang*1, Minghao Wei*, Xue Jiang, Dong Jia*

    Oncology Research, Vol.25, No.7, pp. 1097-1107, 2017, DOI:10.3727/096504017X14836170586829

    Abstract Emerging evidence has suggested that aberrantly expressed microRNAs (miRNAs) are associated with glioma development and progression. The aberrant expression of miR-409-3p has been reported in several human cancers. However, little is known about the function of miR-409-3p in gliomas. The aim of this study was to investigate the specific role and molecular mechanism of miR-409-3p in gliomas. In the present study, we found that miR-409-3p was downregulated in glioma tissue and cell lines. Overexpression of miR-409-3p inhibited glioma cell invasion and proliferation, whereas suppression of miR-409-3p promoted glioma cell invasion and proliferation. High-mobility group nucleosome-binding More >

  • Open Access

    ARTICLE

    miRNA-214 Inhibits Cellular Proliferation and Migration in Glioma Cells Targeting Caspase 1 Involved in Pyroptosis

    Zhenfeng Jiang*1, Lifen Yao†1, Hongge Ma, Panpan Xu, Zhiyan Li, Mian Guo, Jianhang Chen*, Hongbo Bao§, Shupei Qiao, Yufang Zhao, Jia Shen#, Minwei Zhu*, Carolyn Meyers**, Guizhen Ma††, Chuncheng Xie*, Li Liu*, Haiyang Wang*, Wang Zhang*, Qi Dong, Hong Shen*, Zhiguo Lin*

    Oncology Research, Vol.25, No.6, pp. 1009-1019, 2017, DOI:10.3727/096504016X14813859905646

    Abstract Pyroptosis is a type of proinflammatory programmed cell death mediated by caspase 1 activity and occurs in several types of eukaryotic tumor cells, including gliomas. MicroRNAs (miRNAs), small endogenous noncoding RNAs, have been demonstrated to be advantageous in glioma therapy. However, the question of whether miRNAs regulate pyroptosis in glioma remains unknown. The current study found that caspase 1 expression was substantially increased in both glioma tissues and glioma cell lines, U87 and T98G, while miR-214 expression was significantly downregulated. Luciferase reporter assay recognized caspase 1 as a target gene of miR-214. These findings demonstrate More >

  • Open Access

    ARTICLE

    MicroRNA-181b Inhibits Cellular Proliferation and Invasion of Glioma Cells via Targeting Sal-Like Protein 4

    Yu Zhou, Yong Peng, Min Liu, Yugang Jiang

    Oncology Research, Vol.25, No.6, pp. 947-957, 2017, DOI:10.3727/096504016X14791732531006

    Abstract MicroRNAs (miRs), a class of noncoding RNAs that are 18–25 nucleotides in length, are able to suppress gene expression by targeting complementary regions of mRNAs and inhibiting protein translation. Recently, miR-181b was found to play a suppressive role in glioma, but the regulatory mechanism of miR-181b in the malignant phenotypes of glioma cells remains largely unclear. In this study, we found that miR-181b was significantly downregulated in glioma tissues when compared with normal brain tissues, and decreased miR-181b levels were significantly associated with high-grade pathology and a poor prognosis for patients with glioma. Moreover, miR-181b… More >

  • Open Access

    ARTICLE

    Knockdown of Serine Threonine Tyrosine Kinase 1 (STYK1) Inhibits the Migration and Tumorigenesis in Glioma Cells

    Jianping Zhou*, Fan Wang, Bingli Liu, Lin Yang*, Xueying Wang*, Yu Liu*

    Oncology Research, Vol.25, No.6, pp. 931-937, 2017, DOI:10.3727/096504016X14772424117423

    Abstract Pediatric glioma is a devastating brain tumor. Serine threonine tyrosine kinase 1 (STYK1) is a member of the protein tyrosine kinase family and plays a significant role in the formation of several malignant tumors. However, the expression pattern and role of STYK1 in glioma are not yet clear. The aim of this study was to investigate the role and molecular mechanism of STYK1 in glioma. The results showed that STYK1 was highly expressed in glioma cell lines. We also found that knockdown of STYK1 inhibited cell proliferation, migration, and invasion in vitro as well as More >

Displaying 1-10 on page 1 of 56. Per Page